Unsupervised Representations towards **Counterfactual Predictions**

Vacuuming

Sweeping/Mopping

Cooking

Laundry

Vacuuming

Sweeping/Mopping

Cooking

Laundry

Data Scarce Set-up

in Novel Environments

Generative Models: Disentanglement

Objectives of Disentanglement

- Compositional Representations
- Controllable Sample Generation

dSprites

3DShapes

Existing datasets in unsupervised disentanglement learning

Disentanglement: Challenges

XHigh-Resolution Output

XNon-identifiability in Unsupervised setting

X Metrics focus on learning disentangled representations

Locatello et al. ICML 2019.

Disentanglement: Challenges

X High-Resolution Output
StyleGAN based backbone (~1%)
New high-resolution synthetic datasets: Falcor3D and Isaac3D
X Non-identifiability in Unsupervised setting
Limited Supervision (~1%)

X Metrics focus on learning disentangled representations New Metric to Trade-off between controllability and disentanglement

Disentanglement: StyleGAN

(a) Traditional

(b) Style-based generator

- Used a style-based generator to replace traditional generator
- Success at generating high-resolution realistic images

Disentanglement: Semi-StyleGAN

Disentanglement in StyleGAN Mapping Network in the generator conditions on the factor code and the encoder predicts its value The semi-supervised loss is given by

$$\mathcal{L}^{(G)} = \mathcal{L}_{\text{GAN}} + \gamma_G \mathcal{L}_{\text{unsup}} + \alpha \mathcal{L}_{\text{sr}}$$
$$\mathcal{L}^{(D,E)} = -\mathcal{L}_{\text{GAN}} + \gamma_E \mathcal{L}_{\text{unsup}} + \beta \mathcal{L}_{\text{sup}} + \alpha \mathcal{L}_{\text{sr}}$$

with

 \mathcal{L}_{sup}

$$\mathcal{L}_{ ext{unsup}} = \sum_{c \sim \mathcal{C}, z \sim p_z} \left\| E(G(c, z)) - c \right\|_2$$

$$= \sum_{(x,c)\sim\mathcal{J}} \|E(x) - c\|_2$$

$$\mathcal{L}_{ ext{sr}} = \sum_{(x,c)\sim\mathcal{M}} \|E(x) - c\|_2$$

supervised label reconstruction term

J set of all possible factor codes

X: set of labeled pairs of real image and factor code

- M: mixed set of labeled and generated image-code pairs
- E, G: encoder and generator neural networks

Disentanglement: Semi-StyleGAN

Disentanglement in StyleGAN Mapping Network in the generator conditions on the factor code and the encoder predicts its value The semi-supervised loss is given by

$$\mathcal{L}^{(G)} = \mathcal{L}_{\text{GAN}} + \gamma_G \mathcal{L}_{\text{unsup}} + \alpha \mathcal{L}_{\text{sr}}$$
$$\mathcal{L}^{(D,E)} = -\mathcal{L}_{\text{GAN}} + \gamma_E \mathcal{L}_{\text{unsup}} + \beta \mathcal{L}_{\text{sup}} + \alpha \mathcal{L}_{\text{sr}}$$

with

$$\mathcal{L}_{ ext{unsup}} = \sum_{c \sim \mathcal{C}, z \sim p_z} \left\| E(G(c, z)) - c \right\|_2$$

 $\mathcal{L}_{ ext{sup}} = \sum_{(x,c)\sim\mathcal{J}} \|E(x) - c\|_2$

uneunonieod

$$\mathcal{L}_{\mathrm{sr}} = \sum_{(x,c)\sim\mathcal{M}} \|E(x) - c\|_2 \qquad \qquad \Rightarrow \begin{array}{c} \mathrm{smoothness} \\ \mathsf{regularization term} \end{array}$$

Labeled Data $|\mathcal{J}| \ll |\mathcal{X}|$ Unpaired Data \mathcal{M} : Artificially Augmented Data

Semi-StyleGAN: CelebA (256x256)

Ii Data Point <person_id>, long-hair

 g_n

 g_1

Counterfactual Data Point <person_id>, bangs Fixed-value

Bangs

Glasses Semi-StyleGAN on CelebA (0.5% of labeled data)

With very limited supervision, Semi-StyleGAN can achieve good disentanglement on real data

Li et al. ICML 2020.

Semi-StyleGAN: Isaac3D (512x512)

Counterfactual I'_i Data Point <object_id>, x-pos_new

Fixed-value

Robot X-Movement

Object Scale

Semi-StyleGAN on Isaac3D (0.5% of labeled data)

Each factor in the interpolatea images changes smoothly without affecting other factors Li et al. ICML 2020.

Semi-StyleGAN: Falcor3D (512x512)

 g_n

 g_1

Counterfactual Data Point < lighting >, camera_new

Fixed-value

Lighting Intensity Lighting X-Dir Camera X-Pos Semi-StyleGAN on Falcor3D (1% of labeled data)

Each factor in the interpolated images changes smoothly without affecting other factors

Semi-StyleGAN: Role of Limited Supervision

(L2 and L2-gen: lower is better, MIG and MIG-gen: higher is better)

Semi-StyleGAN with the default setting $\gamma_G=eta=\gamma, \gamma_E=0, lpha=1$

Only using 0.25~2.5% of labeled data at par with supervised disentanglement

Semi-StyleGAN: Fine-Grained Tuning

New architecture with same loss model for semantic fine-grained image editing

Coarse-Grained

Fine-Grained

Semi-StyleGAN: CelebA (256x256)

Ii Data Point eyebrow, smile

 g_n

 g_1

Counterfactual Data Point eyebrow, grin Fixed-value

Bushy Eyebrows

rows Slightly Open Mouth Pale Skin Semi-StyleGAN-*fine* on CelebA (1% of labeled data)

We randomly choose some deep learning researchers as test images

Li et al. ICML 2020.

Semi-StyleGAN: CelebA (256x256)

Ii Data Point wall_color, obj_color

I' *I*' Data Point wall_color, Obj_color Fixed-value

Lighting Intensity

Wall Color

ensity Object Color Wa Semi-StyleGAN-*fine* on Isaac3D (1% of labeled data)

We shift the robot position to the right side, and attach it with an unseen object in test images

Representations for multi-step reasoning in Robotics under physical and semantic constraints

Model-based learning

[Deisenroth et al, RSS'07], [Guo et al, NeurIPS'14], [Watter et al, NeurIPS'15], [Finn et al, ICRA'17],

Model-based learning

[Deisenroth et al. RSS'07] [Agrawal et al. ICRA'16]

a

[Ebert et al. CoRL'17]

[Janer et al. ICRA'19]

Leverage Hierarchical Abstraction in Action Space

Without Hierarchical Supervision

Learning with cascaded variational inference

task-agnostic interaction

clearing

Clear all objects within the area of blue tiles.

insertion

Move the target to the goal without traversing red tiles.

crossing

Move the target to the goal

across grey tiles

Quantitative Evaluation

Hierarchical Latent space dyn. ↓ Better performance with sparse reward signal

Averaged over 3 Tasks with 1000 test instances each

MPC (Guo et al. '14, Agrawal et al. '16, Finn et al. 17); CVAE-MPC (Ichter et al. 18), SeCTAR (Co-Reyes et al '18)

Composition through Keypoints

Interpretable

Unsupervised

He et al 2017, Kreiss et al 2019, Lin et al 2020, Sprurr et al 2020

Tang et al 2019, Christiansen et al 2019, Bian et al 2019, He et al 2019, Chen et al 2019

Composition through Keypoints

Interpretable

Unsupervised

He et al 2017, Kreiss et al 2019, Lin et al 2020, Sprurr et al 2020

Tang et al 2019, Christiansen et al 2019, Bian et al 2019, He et al 2019, Chen et al 2019

BBC Pose		Acc.
supervised	Charles et al. [3] Pfister et al. [21]	79.9% 88.0%
unsupervised	Jakab et al. [8] Lorenz et al. [14] Baseline (temp)	68.4% 74.5% 73.3%
	Ours	78.8%

	Human3.6M		Error
	supervised	Newell et al. [18]	2.16
	unsupervised	Thewlis et al. [33]	7.51
		Zhang et al. [41]	4.91
		Lorenz et al. [14]	2.79
		Baseline (temp)	3.07
		Baseline (temp,tps)	2.86
		Ours	2.73

MAFL		Error
unsupervised	Thewlis et al. [33]	6.32
	Zhang et al. [41]	3.46
	Lorenz et al. [14]	3.24
	Jakab et al. [8]	3.19
	Baseline (tps)	4.34
	Ours (No Mask)	2.88
	Ours	2.76

Unsupervised Keypoints: Batch RL

Large Set of Task Demonstrations Policy Learning without Interaction

Unsupervised Keypoints: Batch RL

Unsupervised Keypoints: Batch RL

Unsupervised Representation Learning

Unsupervised Keypoints: Video Prediction

Unsupervised Keypoints: Video Prediction

- Intuitive Physics
- vs Reinforcement Learning
 - Generalization
 - Goal specification
 - Sample efficiency
- vs Analytical Physics Model
 - Underlying dynamics is uncertain or unknown
 - Simulation is too time consuming
 - Partial observation

Photo from Wu et al., Learning to See Physics via Visual De-animation

- Intuitive Physics
- State Representation?
 - Keypoints
 - vs. 6 DoF pose

Photo from Jakab et al., Unsupervised Learning of Object Landmarks through Conditional Image Generation

Photo from Tremblay et al., Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects

From left to right:

- (1) Input image
- (2) Predicted keypoints
- (3) Overlay
- (4) Heatmap from the keypoints
- (5) Reconstructed target image

Learning Causality: Extrapolation

Learning Causality: Counterfactual

Learning Causality

Predicted graph

Learning Causality

Predicted graph

Learning Causality

Predicted graph Predicted keypoint Ground truth keypoint movements movements \bigcirc

Unsupervised Representations towards Counterfactual Predictions

garg@cs.toronto.edu // pair.toronto.edu // Twitter: @Animesh_Garg

