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Paving the path to Robot Autonomy with Simulation



Generalizable Autonomy: Computer Vision & Language

Data PerformanceCompute+ →Structured Models +



Large Structured Models

IID Data & Datasets

Distributed Deployment

• Over-parameterized
• Structured Biases

• Concise problem Definition
• IID Data, easier to label

• Large Scale Compute
• Distributed Deployment

Generalizable Autonomy: Computer Vision & Language
Ingredients of Modern Machine Learning & Applications

Passive Offline Decisions
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Perception
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Paving the path to Robot Autonomy with Simulation

Domain 
Expertise

Data
DrivenOne problem, 

One solution!
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Generalizable Autonomy: Duality of Discovery & Bias

Domain 
Expertise

Data
Driven

Just add 
data…

Input: 
Image

Output:
Action 
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Generalizable Autonomy: Duality of Discovery & Bias

Domain 
Expertise

Data
Driven

✗ Computational sustainability
✗ Data accessibility
✗ Out-of-distribution errors

Just add 
data…

One problem, 
One solution!

✗ Need for experts
✗ Limited applicability
✗ Perf vs Flexibility

Neither achieves 
Generality at Scale



Generalizable Autonomy: Duality of Discovery & Bias

Domain 
Expertise

Data
DrivenGeneralizable Autonomy 

Structure +   Data
• Domain knowledge, 
• Inductive bias, 
• Symmetries, 
• Priors
• …

• Online & Offline,
• Simulation & Real,
• Labelled & self-supervised
• Human in the loop
• …
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Perception

Planning & 
Control

Data & 
Benchmarks

Applications



Paving the path to Robot Autonomy with Simulation

Perception

Planning & 
Control

Data & 
Benchmarks

Applications

✓✗

Sorting and storage Retrieval Packaging

Too many problems to create datasets for each!



Interactive 
Estimation

Simulation 
Systems 

Robustness w\
Randomization

Paving the path to Robot Autonomy with Simulation
Vision: Simulation is Data Factory for Robotics
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Simulation 
Systems 
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Paving the path to Robot Autonomy with Simulation
Vision: Simulation is Data Factory for Robotics



Domain Randomization

James et al 2019Chebotar et al 2019Tobin et al 2017

Uniform Domain 
Randomization

Online System ID 
& Adaptation

Handling Visual 
Observations



Learning Efficiently: Simulators

[Thanenjeyan et al. ICRA‘17]
Time

Physical Scenario Low-Res FEM Simulator



Autonomous Cutting

Dynamics Noise (Variance)
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Multi-finger In-Hand Manipulation

Allshire et al arxiv 2021

Real Robot Challenge: Trifinger platforms

Task: repose in 6-DoF  
(position + orientation) 

Development done remotely in simulation 
using Isaac Gym, no physical robot 
access



Multi-finger In-Hand Manipulation
Dextrous Manipulation via Simulation
OpenAI, 2018

GPU-Simulated Manipulation
Isaac Gym

Real Robot Challenge
Structured Policies



• A better representation than position + quaternion in {observation, reward}?
• Allow for 6-DoF reposing

• Traditional reward & observation performed poorly

Multi-finger In-Hand Manipulation

Allshire et al arxiv 2021



• Able to train in <24h on 1 GPU

Multi-finger In-Hand Manipulation

Allshire et al arxiv 2021



(Real Time Videos)

83% Success

Sim2Real
Results

Robotics as a Service

No physical 
robot access



Sim2Real: Learning to Walk
Locomotion: Situation Specific Gaits

common quadrupedal gaits custom gait 



High Level 
Controller (2.5 Hz)

Low Level 
Controller (500 

Hz)
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Da, Xingye, et al. submitted to CoRL 2020

Training Setup

Variations:
• Treadmill belts
• Treadmill speed
• Robot orientation

Rewards:
• Stay balance
• Stay in place
• Minimize energy



Treadmill Speed 0 m/s



Treadmill Speed 0.15 m/s



Command Speed 0.15 m/s

Slow Motion x0.5





Representations RL: Task Spaces
Full model to Simplified Model
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Centroidal Task Space Full Robot Model
GLiDE: Generalizable Quadrupedal Locomotion, under review 2021



Representations RL: Task Spaces
Full model to Simplified Model
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Training Testing

Sim2RealDifferent Robot: A1

Centroidal Task Space
GLiDE: Generalizable Quadrupedal Locomotion, under review 2021



Myth 1: Sim-to-Real is Hard Myth 2: Randomization is Necessary

Sim-to-Real: Is Randomization all we need?



sim-to-real

dynamic 
parameters

update 
parameters success/failure

realsim

randomize everything
while failure:

randomize more

Sim-to-Real



Sim-to-Real: Without Randomization
Dynamics Randomization: Necessary?

Learning Locomotion Skills for Cassie: Iterative 
Design and Sim-to-Real

CoRL 2020

Dynamics Randomization Revisited: A Case 
Study for Quadrupedal Locomotion

ICRA 2021



Sim-to-Real: With Randomization

No Velocity Feedback High Joint Gains

Dynamics Randomization: Sufficient?

Design Choices Matter



randomize everything
while failure:

randomize more

sim-to-real

dynamic 
parameters

randomize nothing
while failure:

analyze data and design issues
randomize specific parameters 

update 
parameters success/failure

realsim

Sim-to-Real



Sim-to-Real
Dynamics Randomization: Neither Necessary nor Sufficient?

randomize everything
while failure:

randomize more

sim-to-real

dynamic 
parameters

randomize nothing
while failure:

analyze data and design issues
randomize specific parameters 

update 
parameters success/failure

realsim

Dynamics Randomization can 
be avoided given right design 
choices.

Should only be used based on 
domain understanding
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Paving the path to Robot Autonomy with Simulation
Vision: Simulation is Data Factory for Robotics



Why simulate cutting?

• Applications in food-processing, robotic surgery, household robotics
• Design of cutting machines
• Optimal motion of the cutting tool for a particular material
• Safe trajectory generation through accurate force predictions

foodmanufacture.co.uk robohub.comMoley Robotics



Approach

• Simulate deformable objects through Finite Element Method
• Continuous model for crack propagation, damage mechanics
• Detailed model for contact mechanics achieves realistic prediction of knife

forces

41



Weakening of Cutting Springs

Progressive weakening of cutting springs:

k!" = k! − γ f#$%&!



Real-robot Force Measurements

Prajjwal
Jamdagni

Yan-Bin 
Jia



Inference of Simulation Parameters



Trajectory Optimization minimize ℒ = !
" ∫ / 0, 2, 3, 4 + 7̇#$%&' 0 80

s. t. <#$%&' 0 ≤ !
( >#$%&'



Real Robot Transfer
Model-predictive cutting on the real robot
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Paving the path to Robot Autonomy with Simulation
Vision: Simulation is Data Factory for Robotics



Human environments are full of objects designed “for us and by us”

Isaac Sim: Ease of Use
Application: Mobile Manipulation



Isaac Sim: Ease of Use
Application: Mobile Manipulation

Design mobile manipulation system for 
articulated object interaction in human 
environments like kitchens

• Generalize to various kitchen layouts

• Handle intra-category variations

• Possess real-time capabilities to handle 
dynamic variations



Isaac Sim: Ease of Use

Motion ControlMeasurement Filtering

World

Scene

Synthetic 
Data Utils LIDAR Sensor Dynamic Control 

Toolbox

PhysX 

Sensor

Camera

LiDAR

Height Scan

Robot 

Sensors

Articulation
● Setup
● Reset
● Apply Action

Agent

● Model-based
● Learning-

based
● Planners

….

● Filtering
● Mapping
● Localization

….

Physics / Kit-Helper

Visualization Markers

Passive Objects

... La
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Isaac Sim: Ease of Use for RL
World

SceneRobot 

Sensors

Articulation
● Setup
● Reset
● Apply Action

Agent

Physics / Kit-Helper

Visualization Markers

Passive Objects

... Le
ve

l 1

Le
ve

l 2

Le
ve

l n….

• Each layer interfaces with the next layer via “observations-actions” 
• Interfaces are modular enough to ensure the “world” acts the same in simulation 

and real-world

RL Environment
RL 

Agent



Multiple cameras LiDAR

Height Scanner using PhysX raycasting Contact Sensor

Isaac Sim: Ease of Use for RL



Feed-Forward
Model

State 
?)

Latent State 
? or <

Object-Centric 
Generative Model 

of Action Concepts

Reference or 
Implicit Reward

Structure in Compositional Planning
Feedback
Controller

Measured State 
? or <

+

-

Agent-Centric
Policy/Planner

Goal-conditioned 
Reactive controller

Solvable online for 
different agents

Input

→ “Take” ”Jug”
→ “Open” ”Fridge” 
→ “Put” ”Jug” in ”Fridge”

Goal Generation



Agent-centric Planner

Object-centric Planner

Keyframes 
Generator

Proprioception 
Data

Applied Torque

RGB-D Semantic 
Mask

Scene Interpreter

Grasp Pose Articulation

IROS 2022 (under review)



Agent-centric Planner

Object-centric Planner

Keyframes 
Generator

Proprioception 
Data

Applied Torque

RGB-D Semantic 
Mask

Scene Interpreter

Mapping
SLQ-MPC

Inverse Dynamics 
Controller

optimization

model

Grasp Pose Articulation

IROS 2022 (under review)



(b) Ovens(a) Drawers (c) Washing Machines

Different kitchen layouts designed on NVIDIA Isaac Sim using PartNet-Mobility dataset

Structure in Compositional Planning: Setup

IROS 2022 (under review)



IROS 2022 (under review)



IROS 2022 (under review)



IROS 2022 (under review)
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