LanczosNet: Multi-Scale Deep Graph Convolutional Networks

Renjie Liao, Zhizhen Zhao, Raquel Urtasun, Richard S. Zemel Published as a conference paper at ICLR 2019

Presented By Juan Carrillo March 30, 2021

Index

- Motivation
- Problem setting
- Contributions
- Previous approaches
- Background
- Methods
- Experiments
- Conclusions
- Limitations

Motivation

- Learning representations in Graph data
 - $_{\circ}$ Graph level
 - $_{\circ}$ Node level
 - $_{\circ}$ Multi-scale
 - $_{\circ}$ Others...
- Graph are rich data structures
 - Bioinformatics
 - Transportation networks
 - Social networks
 - $_{\circ}$ Point clouds
 - 。 3D Meshes
 - $_{\circ}$ Knowledge graphs
 - Recommendation engines
 - $_{\circ}~$ Particle physics

Veselkov et al. (2019)

Problem setting

Node classification

Given a graph, predict the category of unlabeled nodes

Graph regression

Given a graph, predict a quantitative attribute of it

Mishra et al. (2020)

Carbone et al. (2020)

Contributions

- LanczosNet uses the Lanczos algorithm to efficiently extract useful features from graphs
- The architecture allows multi-scale analysis in large graphs
- Achieves SOTA performance in two challenging benchmarks

Supervised/semi-supervised learning

Battaglia et al. (2018)

Vishwanathan et al. (2020)

Unsupervised learning

García-Durán et al. (2017)

Graph Convolution Based Models

- Origins in graph signal processing (GSP)
- Supported by spectral graph theory

Bruna et al. (2014)

Velickovic et al. (2018)

Recurrent Neural Networks based Models

- Origins in recurrent neural networks (RNNs)
- Graph neural networks (GNNs)

Gated Graph Sequence Neural Networks

Li et al. (2017)

GraphSAGE

Hamilton et al. (2017)

Graph based manifold learning

- High to low dimensional representations
- Reduces graph complexity

Locally Linear Embedding (LLE)

Roweis & Saul (2000)

Diffusion maps

Nadler et al. (2006)

Background

Graph notation and definitions

• Undirected graph

Adjacency matrix

 $a_{ij} = \begin{cases} 1 & \text{if there is some edge } \{v_i, v_j\} \in E \\ 0 & \text{otherwise.} \end{cases}$

$$A = \begin{pmatrix} v_1 v_2 v_3 v_4 v_5 \\ \bullet \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Gallier (2020)

Background

Graph notation and definitions

• Degree matrix

$$d(v) = |\{u \in V \mid (v, u) \in E \text{ or } (u, v) \in E\}|$$
$$D(G) = \operatorname{diag}(d_1, \dots, d_m)$$

• Laplacian matrix

$$L = D - A$$

$$\begin{pmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 3 & -1 & 0 \\ 0 & -1 & -1 & 3 & -1 \\ 0 & -1 & 0 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$L(G) = D(G) - W,$$

$$L_{\text{sym}} = D^{-1/2} L D^{-1/2} = I - D^{-1/2} W D^{-1/2}$$

Gallier (2020)

Background

Additional background...

Graph Fourier Transform

$$L = I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$
$$S = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$
$$S = U\Lambda U^{\top}$$
$$\Lambda_{i,i} = \lambda_i \text{ and } 1 \ge \lambda_1 \ge \dots \ge \lambda_N \ge -1$$
$$\boxed{Y = U^{\top}X}$$
$$X \in \mathbb{R}^{N \times F}$$

• Localized Polynomial Filter

$$g_w(\Lambda) = \sum_{t=0}^{\tau-1} w_t \Lambda^t$$
$$\boldsymbol{w} = [w_0, w_1, \dots, w_{\tau-1}] \in \mathbb{R}^{\tau \times 1}$$
$$Y = \sum_{t=0}^{\tau-1} g_t(S, \dots, S^t, X) W_t$$
$$Y \in \mathbb{R}^{N \times O} \qquad W_t \in \mathbb{R}^{F \times O}$$

Lanczos Algorithm

Algorithm 1 : Lanczos Algorithm 1: Input: S, x, K, ϵ 2: Initialization: $\beta_0 = 0$, $q_0 = 0$, and $q_1 =$ x/||x||3: **For** $j = 1, 2, \dots, K$: 4: $z = Sq_j$ 5: $\gamma_j = \hat{q_j^{\top}} z$ 6: $z = z - \gamma_j q_j - \beta_{j-1} q_{j-1}$ 7: $\beta_j = \|z\|_2$ 8: If $\beta_j < \epsilon$, quit q_{j+} 9: 10: 11: $Q = [q_1$ 12: Constru 13: Eigen de 14: Return

Goal: Obtain an approximation of

- Orthogonal matrix Q
- Symmetric tridiagonal matrix T

• Such that
$$Q^{\top}SQ = T$$

$$\begin{array}{c} _{+1} = z/\beta_{j} \\ \\ _{1}, q_{2}, \cdots, q_{K}] \\ \\ \text{ict } T \text{ following Eq. (2)} &\longrightarrow T = \begin{bmatrix} \gamma_{1} & \beta_{1} & & & \\ \beta_{1} & \ddots & \ddots & & \\ & \beta_{1} & \ddots & \ddots & \\ & & \ddots & & \\ & & \ddots & & \beta_{N-1} \\ & & & & \beta_{N-1} & \gamma_{N} \end{bmatrix}$$

LanczosNet

Localized Polynomial Filter

 $X_{:,i} \in \mathbb{R}^{N imes 1}$ $ilde{Q}$ of $\mathcal{K}_K(S, X_{:,i})$ and $ilde{T}$ $Y_j = ilde{Q} oldsymbol{w}_{i,j}$ $oldsymbol{w}_{i,j} \in \mathbb{R}^{K imes 1}$ $ilde{Q} \in \mathbb{R}^{N imes K}$

 Spectral Filter $S \approx QTQ^{\top} \qquad Q \in \mathbb{R}^{N \times K}$ $T = BRB^{\top} \qquad B \in \mathbb{R}^{K \times K}$ $S \approx V R V^{\top}$ V = Q B $S^t \approx V R^t V^\top$ $Y_j = [X_i, SX_i, \dots, S^{K-1}X_i] \boldsymbol{w}_{i,j}$ $\approx [X_i, VRV^{\top}X_i, \dots, VR^{K-1}V^{\top}X_i] \boldsymbol{w}_{i,j}$

Liao et al. (2019)

LanczosNet

• Learning the Spectral Filter

$$Y_{j} \approx [X_{i}, VRV^{\top}X_{i}, \dots, VR^{K-1}V^{\top}X_{i}]\boldsymbol{w}_{i,j} \qquad \hat{L}_{i} = \sum_{k=1}^{K} f_{i}(r_{k}^{1}, r_{k}^{2}, \cdots, r_{k}^{K-1})v_{k}v_{k}^{\top}$$
$$\{(r_{i}, v_{i})|i = 1, \dots, K\} \qquad Y_{j} = [X_{i}, \hat{L}_{1}X_{i}, \dots, \hat{L}_{K-1}X_{i}]\boldsymbol{w}_{i,j}$$

Multi-scale Graph Convolution

$$Y = \begin{bmatrix} L^{\mathcal{S}_1} X, \dots, L^{\mathcal{S}_M} X, \hat{L}_1(\mathcal{I}) X, \dots, \hat{L}_N(\mathcal{I}) X \end{bmatrix} W$$
$$W \in \mathbb{R}^{(M+E)D \times O} \qquad \mathcal{S} = \{0, 1, \dots, 5\} \qquad \mathcal{I} = \{10, 20, \dots, 50\}$$
$$\hat{L}_i(\mathcal{I}) = \sum_{k=1}^K f_i(r_k^{\mathcal{I}_1}, r_k^{\mathcal{I}_2}, \dots, r_k^{\mathcal{I}_{|\mathcal{I}|}}) v_k v_k^{\mathsf{T}}$$

Liao et al. (2019)

LanczosNet

Citation networks

Goal: Predict class of unlabeled nodes (documents) in citation networks

Cheung et al. (2020)

Citation networks

Goal: Predict class of unlabeled nodes (documents) in citation networks

Cora	GCN-FP	GGNN	DCNN	ChebyNet	GCN	MPNN	GraphSAGE	GAT	LNet	AdaLNet
Public	$ 74.6 \pm 0.7 $	77.6 ± 1.7	79.7 ± 0.8	78.0 ± 1.2	80.5 ± 0.8	78.0 ± 1.1	74.5 ± 0.8	$\textbf{82.6} \pm \textbf{0.7}$	79.5 ± 1.8	80.4 ± 1.1
3%	$ 71.7 \pm 2.4 $	73.1 ± 2.3	76.7 ± 2.5	62.1 ± 6.7	74.0 ± 2.8	72.0 ± 4.6	64.2 ± 4.0	56.8 ± 7.9	76.3 ± 2.3	$\textbf{77.7} \pm \textbf{2.4}$
1%	59.6 ± 6.5	60.5 ± 7.1	66.4 ± 8.2	44.2 ± 5.6	61.0 ± 7.2	56.7 ± 5.9	49.0 ± 5.8	48.6 ± 8.0	66.1 ± 8.2	$\textbf{67.5} \pm \textbf{8.7}$
0.5%	50.5 ± 6.0	48.2 ± 5.7	59.0 ± 10.7	33.9 ± 5.0	52.9 ± 7.4	46.5 ± 7.5	37.5 ± 5.4	41.4 ± 6.9	58.1 ± 8.2	$\textbf{60.8} \pm \textbf{9.0}$
Citeseer	GCN-FP	GGNN	DCNN	ChebyNet	GCN	MPNN	GraphSAGE	GAT	LNet	AdaLNet
Public	$ 61.5 \pm 0.9 $	64.6 ± 1.3	69.4 ± 1.3	70.1 ± 0.8	68.1 ± 1.3	64.0 ± 1.9	67.2 ± 1.0	$\textbf{72.2} \pm \textbf{0.9}$	66.2 ± 1.9	68.7 ± 1.0
1%	54.3 ± 4.4	56.0 ± 3.4	62.2 ± 2.5	59.4 ± 5.4	58.3 ± 4.0	54.3 ± 3.5	51.0 ± 5.7	46.5 ± 9.3	61.3 ± 3.9	$\textbf{63.3} \pm \textbf{1.8}$
0.5%	43.9 ± 4.2	44.3 ± 3.8	53.1 ± 4.4	45.3 ± 6.6	47.7 ± 4.4	41.8 ± 5.0	33.8 ± 7.0	38.2 ± 7.1	53.2 ± 4.0	$\textbf{53.8} \pm \textbf{4.7}$
0.3%	38.4 ± 5.8	36.5 ± 5.1	44.3 ± 5.1	39.3 ± 4.9	39.2 ± 6.3	36.0 ± 6.1	25.7 ± 6.1	30.9 ± 6.9	44.4 ± 4.5	$\textbf{46.7} \pm \textbf{5.6}$
Pubmed	GCN-FP	GGNN	DCNN	ChebyNet	GCN	MPNN	GraphSAGE	GAT	LNet	AdaLNet
Public	$ 76.0 \pm 0.7$	75.8 ± 0.9	76.8 ± 0.8	69.8 ± 1.1	77.8 ± 0.7	75.6 ± 1.0	76.8 ± 0.6	76.7 +- 0.5	$\textbf{78.3} \pm \textbf{0.3}$	78.1 ± 0.4
0.1%	70.3 ± 4.7	70.4 ± 4.5	73.1 ± 4.7	55.2 ± 6.8	73.0 ± 5.5	67.3 ± 4.7	65.4 ± 6.2	59.6 +- 9.5	$\textbf{73.4} \pm \textbf{5.1}$	72.8 ± 4.6
0.05%	63.2 ± 4.7	63.3 ± 4.0	66.7 ± 5.3	48.2 ± 7.4	64.6 ± 7.5	59.6 ± 4.0	53.0 ± 8.0	50.4 +- 9.7	$\textbf{68.8} \pm \textbf{5.6}$	66.0 ± 4.5
0.03%	56.2 ± 7.7	55.8 ± 7.7	60.9 ± 8.2	45.3 ± 4.5	57.9 ± 8.1	53.9 ± 6.9	45.4 ± 5.5	50.9 +- 8.8	60.4 ± 8.6	$\textbf{61.0} \pm \textbf{8.7}$

Quantum Chemistry

Goal: Predict 16 quantities per molecule in QM8 dataset

Ramakrishnan et al. (2015)

Quantum Chemistry

Goal: Predict 16 quantities per molecule in QM8 dataset

Methods	Validation MAE ($\times 1.0e^{-3}$)	Test MAE ($\times 1.0e^{-3}$)
GCN-FP [29]	15.06 ± 0.04	14.80 ± 0.09
GGNN [37]	12.94 ± 0.05	12.67 ± 0.22
DCNN [8]	10.14 ± 0.05	9.97 ± 0.09
ChebyNet [7]	10.24 ± 0.06	10.07 ± 0.09
GCN [11]	11.68 ± 0.09	11.41 ± 0.10
MPNN [62]	11.16 ± 0.13	11.08 ± 0.11
GraphSAGE [39]	13.19 ± 0.04	12.95 ± 0.11
GPNN [40]	12.81 ± 0.80	12.39 ± 0.77
GAT [33]	11.39 ± 0.09	11.02 ± 0.06
LanczosNet	$\textbf{9.65} \pm \textbf{0.19}$	$\textbf{9.58} \pm \textbf{0.14}$
AdaLanczosNet	10.10 ± 0.22	9.97 ± 0.20

Ablation studies in QM8

	Model	Graph No Kernel Embe	ode Spectra edding Filter	¹ Short Scales	Long Scales	Lanczos Step	Validation MAE ($\times 1.0e^{-3}$)
Multi-Scale Graph Convolution	LanczosNet LanczosNet LanczosNet LanczosNet	one one one	-hot -hot -hot -hot	$ \{1, 2, 3\} \\ \{3, 5, 7\} \\ \{3, 5, 7\} \\ \{3, 5, 7\} $	$\{10, 20, 30\}$ $\{10, 20, 30\}$	20 20	10.71 10.60 10.54 10.41
Lanczos Step	LanczosNet LanczosNet LanczosNet LanczosNet	one one one	-hot -hot -hot -hot		$ \{ 10, 20, 30 \} \\ \{ 10, 20, 30 \} \\ \{ 10, 20, 30 \} \\ \{ 10, 20, 30 \} \\ \{ 10, 20, 30 \} $	5 10 20 40	10.49 10.44 10.54 10.49
Learning Spectral Filter	LanczosNet LanczosNet LanczosNet LanczosNet	one	-hot 3-MLF -hot 5-MLF (3-MLF (3-MLF	$\begin{cases} 3, 5, 7 \\ 3, 5, 7 \\ 3, 5, 7 \\ 3, 5, 7 \end{cases}$	$ \{ 10, 20, 30 \} \\ \{ 10, 20, 30 \} \\ \{ 10, 20, 30 \} \\ \{ 10, 20, 30 \} \\ \{ 1, 2, 3, 5, 7, 10, 20, 30 \} $	20 20 20)} 20	10.44 10.54 10.26 9.56
Graph Kernel/Node Embedding	AdaLanczosNet AdaLanczosNet AdaLanczosNet	√ one	-hot 3-MLF 3-MLF 3-MLF	$ \begin{cases} 3, 5, 7 \\ 43, 5, 7 \\ 1, 2, 3 \end{cases} $	$ \{ 10, 20, 30 \} \\ \{ 10, 20, 30 \} \\ \{ 5, 7, 10, 20, 30 \} $	20 20 20	10.99 10.20 9.96

Conclusions

- LanczosNet uses the Lanczos algorithm to extract useful features from graphs
- The method enables analysis of multi-scale patterns in graphs
- Allows efficient learning of spectral filters
- Achieves SOTA performance in two challenging benchmarks

Limitations

- The Lanczos algorithm could be time consuming, less desirable for real-time applications
- What is the applicability in directed graphs?
- What are the implications for use in graphs with significantly larger size?

Questions?

• Please reach out in Piazza

