CSC2547 3D & Geometric Deep Learning

Learning Delaunay Surface Elements for Mesh Reconstruction

Marie-Julie Rakotosanoa, Paul Guerrero, Noam Aigerman, Niloy Mitra, Maks Ovsjanikov

Date: 2021/3/15

Presenter: Brendan Duke

Instructor: Animesh Garg

Main Problem

• Reconstructing triangle meshes from point clouds

Challenges

- Detailed / thin surfaces
- Non-unformly sampled point clouds
- Manifoldness!

Challenges: Manifoldness

Prior Work

 Oriented normals -> Poisson surface reconstruction -> Marching Cubes

Prior Work

IER: Meshing Point Clouds with Intrinsic-Extrinsic Ratio Guidance

Contributions

- Combine classic methods with learning-based data priors
- Core idea: combine Delaunay triangulations and learned log maps
- Delaunay triangulations are guaranteed manifold
- Log maps parametrize complex geometry

General Background: Geodesics

• Geodesics connect two points along a shortest path on the surface

General Background: Log Maps

General Background: Log Maps

General Background: Kabsch Algorithm

For corresponding point clouds

- 1. Translation
- 2. Covariance matrix
- 3. Optimal rotation via SVD

Approach: Overview

- 1. For each point extract a geodesic patch
- 2. Projection to log map (2D embedding of the patch)
- 3. Align log map embeddings
- Delaunay triangulation ---> Delaunay Surface Element (DSE)
- 5. DSEs vote for candidate triangles ---> mesh

Approach: Pipeline Input Points Euclidean Patch

Approach: Pipeline

Input Points Euclidean Patch

Geodesic Patch

Approach: Geodesic Classification

FoldingNet. Yang et al, 2018.

Approach: Pipeline

Approach: Ground Truth Log Maps

analytical solution

The Vector Heat Method. Sharp et al, 2020.

Approach: Vector Heat Method

Algorithm 1 The Heat Method

- I. Integrate the heat flow $\dot{u} = \Delta u$ for some fixed time t.
- II. Evaluate the vector field $X = -\nabla u / |\nabla u|$.
- III. Solve the Poisson equation $\Delta \phi = \nabla \cdot X$.

Approach: Pipeline

Approach: Log Map Alignment

Approach: Pipeline

Approach: Triangle Voting

triangle is member of three DSEs

triangle is member of one DSE

Approach: Pipeline

Experimental Setup: Datasets

"FamousThingi"

Thingi10k

Experimental Setup: Baselines

- Ball pivoting and Alpha shapes
 - Classic algorithms
 - "Roll a ball on the surface" to deduce connectivity
- Restricted Voronoi Estimation (RVE)
 - Estimate Voronoi regions by projecting to tangent planes
 - Closest to "Learning DSEs"
- PointTriNet and Intrinsic-Extrensic Ratio Guidance Meshing
 - Learning based methods

Experimental Setup: Metrics

• Chamfer Distance

$$ext{CD}(P,Q) = rac{1}{N} \sum_{p \in P} \min_{q \in Q} \|p-q\|_2 + rac{1}{N} \sum_{q \in Q} \min_{p \in P} \|q-p\|_2$$

- Percentage of non-manifold triangles
- Standard deviation of triangle angles

Ball Pivoting RVE PointTriNet IER Meshing α -Shapes (5%) Ours NM / CD (*1°-2) _____ NM / CD (*1°-2) _____ _____ _____ -----19.1% / 0.26 30.7% / 0.31 17.6% / 0.30 0.0%/0.98 17.4%/0.46 3.4%/0.27 2 24 . S. Cal **Results** 0.0% / 1.25 53.8%/0.97 18.5% / 0.60 0.9%/0.46 17.3% / 0.47 10.6% / 0.52 -----26.7% / 0.49 16.7% / 0.35 MAN WAN 0.8% / 0.35 0.1%/1.09 7.9%/0.37 0.0% / 2.49 58.6% / 1.06 29.2% / 0.69 18.3%/0.47 10.2%/0.51 2.6%/0.47

Results

Results

Results: Quantitative

Method	NM (%)	$\text{CD} * 1^{e-2}$
ball pivoting	25.7	0.524
PointTriNet [41]	17.2	0.337
RVE [10]	9.2	0.344
IER meshing [33]	5.3	0.343
lpha-shapes $3%$	2.5	0.939
lpha-shapes 5%	1.7	1.064
Ours	0.9	0.328

Results: Quantitative

Results: Quantitative

Method	NM (%)	$\text{CD} * 1^{e-2}$
Ours w/o align, select	32.0	0.332
Ours w/o select	14.6	0.346
Ours w/o log maps	12.1	0.348
Ours w/o align	1.9	0.328
Ours	0.9	0.328

Limitations and Open Problems

- Dealing with noise?
- Missing direct comparison with Poisson surface reconstruction
- Learned triangle selection

Contributions (Recap)

- Combine classic methods with learning-based data priors
- Core idea: combine Delaunay triangulations and learned log maps
- Delaunay triangulations are guaranteed manifold
- Log maps parametrize complex geometry

Thank you! Questions?

