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Representation of Signals: Discrete

Traditionally, discrete representations for signals are used.
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Signal Parametrized by Neural Networks

In recent years, there’s been significant research interest on implicit 
neural representations.
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Benefits of Implicit Neural Representations

• Unlike discrete representations:

• Agnostic to grid resolution: model memory scales with signal complexity

• Differentiations computed automatically 
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Problems of Implicit Neural Representations

• Compared to discrete representations, can 
fail to encode high frequency details 

Implicit neural representation
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blurry edges/ missing curtains/ missing frequencies



Problems of ReLU, etc.

• ReLU: Linearity-> second or higher order derivatives == 0 

• Losing information in higher-order derivatives of signals

• Other activations (softplus, tanh): derivatives not well 
behaved



Problems of ReLU, etc.

• ReLU: Linearity-> second or higher order derivatives == 0 

• Losing information in higher-order derivatives of signals

• Other activations (softplus, tanh): derivatives not well 
behaved

We want: second or higher order 

derivatives !=0 & tractable derivative 

behaviours!



SIREN: Sinusoidal 
Representation Networks



Contributions 

- Prior work: 
- periodic activation:

- Hypernetwork functional image representation

- Constructed a hypernetwork to produce weights of a target network, which parametrizes RGB images. Cosine was used as the 
activation function of the target network.

- didn’t study behaviours of derivatives or other applications of cosine activation

- Taming the waves: sine as activation function in deep neural networks

- Lack of preliminary investigation of potential benefits of sine

- SIREN proposes:

- A simple MLP architecture for implicit neural representations that uses sine as activation function

- Compared to prior work, this paper:

- Proposes a continuous implicit neural representation using periodic activation that fits complicated natural signals, as well as
their derivatives, robustly

- Provides an initialization scheme for this type of network and validates that weights can be learned using hypernetworks

- Demonstrates a wide range of applications



Problem Setting

Find a class of functions Φ that satisfies the relation F:

On the continuous domain of x.

Φ: implicitly defined by the relation F; 

Neural networks that parametrize Φ: implicit neural representations 



Problem Setting



Problem Setting: example

Each Input x Output Φ(x) supervised by Find Φ that minimizes

Cm: 2-norm of Φ(x)-f(x) 



Problem Setting: example

Each Input x Output Φ(x) supervised by Find Φ that minimizes

Gradients of the target image

Find Φ that minimizes

Cm: 2-norm of Φ’(x)-f’(x) 



SIREN: Architecture

- Basically MLPs with Sine activations



SIREN: Initialization scheme

- Crucial. Without carefully chosen uniformly distributed weights,  
SIREN doesn’t perform well

- Key idea: preserve the distribution of activations, such that the final 
output at initialization does not depend of the number of layers



SIREN: Initialization scheme

- Assuming that x~U(-1,1), x ∈ Rn

- Initialize the weights W of the first layer such that 
sin(30*Wx+b) spans multiple periods over [-1,1]



SIREN: Initialization scheme

- Assuming that x~U(-1,1), x ∈ Rn

- For other layers with input x in n-dimensional space, initialize 
weights according to U(-√(􏰕 6/n), √(􏰕 6/n))

- Ensures that input to each activation follows N(0,1) 
approximately



Experiments: Image reconstruction

• Derivatives not well behaved: Losing gradient 
informations in reconstructed images

• SIREN: gradient/ laplacian well preserved



Experiments: Video reconstruction

• SIREN: more high frequency details preserved



Experiments: Audio reconstruction



Experiments: Poisson equation

- gradients ∇f  , Laplacian ∆f = ∇ · ∇f 



SIREN

Experiments: Poisson equation- Image 
reconstruction 

Quantitative results for PSNR

- tanh&ReLU P.E.: both failed for 
fitting laplacian

- SIREN: minor issues due to the 
ill-posed problem nature



Experiments: Poisson equation- Image editing

- Fit 2 SIRENs f1, f2 for image reconstruction with 
loss function

- Fit a third SIREN for image editing with the same loss 
function as above, except that ∇xf(x)=α·∇f1(x)+(1−α)·∇f2(x), 
α∈[0,1] 



Experiments: Poisson equation- Image editing

Decent results with gradient supervision only!



Quick recap: Signed distance function (SDF)

X-Y plane

Park et al., 2019



Experiments: Representing shapes with SDF

ψ(x) = exp(−α · |Φ(x)|), 
α ≫ 1 
Penalize Φ(x) ==0 when 
x is not on the surface 

Gradient of SDF ==1 SDF = 0 when x is on the surface ∇xΦ(x)  ==  normals



Experiments: Representing shapes with SDF

Fine details 
missing in the 
baseline(left)



Experiments: Solving Differential Equations

Helmholtz equation

Known source functionWave field (unknown) 1/(c(x))^2, c(x): wave velocity



Experiments: Solving Differential Equations

c(x) known 

Only output of SIREN was able to match results from a numerical solver 

c(x) unknown 

SIREN velocity model 
outperformed principled 
solver 



Experiments: Learning priors



Discussions

- Poisson image editing is nothing new: Mixing gradients

- The authors didn’t give a formal definition of “well-behaved”, which is apparently an 
important property of sine activation.

- The authors mentioned that SIREN initialized improperly had bad performance, but 
didn’t link this back to the “key idea” in the initialization scheme. Could’ve done an 
ablation study?

- PyTorch/ Tensorflow also follows a similar default initialization scheme except that it also 
depends on output dimensions: sqrt(6 / (fan_in + fan_out))



Contributions (Recap)

- Prior work: 
- periodic activation:

- Hypernetwork functional image representation

- Constructed a hypernetwork to produce weights of a target network, which parametrizes RGB images. Cosine was used as the 
activation function of the target network.

- didn’t study behaviours of derivatives or other applications of cosine activation

- Taming the waves: sine as activation function in deep neural networks

- Lack of preliminary investigation of potential benefits of sine

- SIREN proposes:

- A simple MLP architecture for implicit neural representations that uses sine as activation function

- Compared to prior work, this paper:

- Proposes a continuous implicit neural representation using periodic activation that fits complicated natural signals, as well as
their derivatives, robustly

- Provides an initialization scheme for this type of network and validates that weights can be learned using hypernetworks

- Demonstrates a wide range of applications


