CSC2457 3D & Geometric Deep Learning

Canonical Capsules: Unsupervised Capsules in Canonical Pose

Weiwei Sun^{1,5,*}, Andrea Tagliasacchi^{3,4,*}, Boyang Deng⁴, Sara Sabour^{3,4}, Soroosh Yazdani⁴, Geoffrey Hinton^{3,4}, Kwang Moo Yi^{1,5}

¹University of British Columbia, ³University of Toronto, ⁴Google Research, ⁵University of Victoria, *equal contributions

Date: March 16th 2021

Presenter: Ioannis Xarchakos

Instructor: Animesh Garg

Main Problem

Main Problem: Training 3D deep representations in an unsupervised fashion

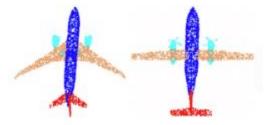
Importance

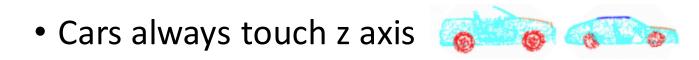
- This work achieves state of the art perfromance without labeled data
 - Many person-hours are required to extract accurate annotations
- The framework requires no manual object pre-canonicalization

Prior Work

Prior work exploits the inductive bias of the training data sets

• Airplanes cockpit is always along y axis





References:

- Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3D Point Capsule Networks
- Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan Russell, and Mathieu Aubry. Learning Elementary Structures for 3D Shape Generation and Matching

Contributions

This work proposes :

- Unsupervised learning on 3D point clouds using capsules
- Object-centric unsupervised learning

Past work:

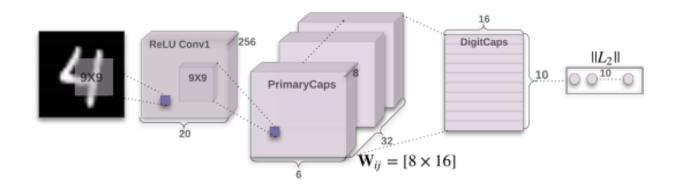
• Requires tons of labeled data to yield state of the art results

This work shows:

 State of the art performance in unsupervised 3D point cloud registration, reconstruction and classification

General Background

Capsule networks



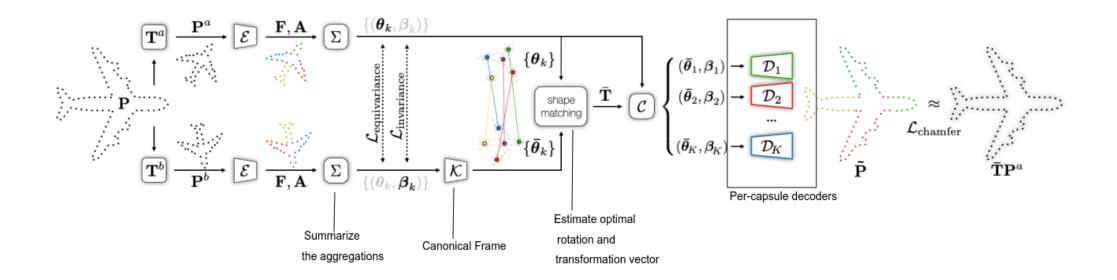
References:

• Dynamic Routing Between Capsules, Sabour et al,. 2017

Notation

- Point cloud $\mathbf{P} \in \mathbb{R}^{P \times D}$
- Random transformations $\mathbf{T}^{a}, \mathbf{T}^{b} \in \mathbf{SE}(D)$
- Point clouds after transformation $\mathbf{P}^{a}, \mathbf{P}^{b}$
- Capsule Encoder \mathcal{E}
- K-fold attention map $\mathbf{A} \in \mathbb{R}^{P \times K}$
- Per-point feature map $\mathbf{F} \in \mathbb{R}^{P \times C}$
- K-th capsule pose $\theta_k \in \mathbb{R}^3$
- Capsule descriptor $\boldsymbol{\beta}_k \in \mathbb{R}^C$

Approach Overview



where $\mathbf{A}, \mathbf{F} = \mathcal{E}(\mathbf{P})$

Method

Decompositions

Pose estimation

$$oldsymbol{ heta}_k = rac{\sum_p \mathbf{A}_{p,k} \mathbf{P}_p}{\sum_p \mathbf{A}_{p,k}}$$

Descriptor estimation

$$\boldsymbol{\beta}_{k} = \frac{\sum_{p} \mathbf{A}_{p,k} \mathbf{F}_{p}}{\sum_{p} \mathbf{A}_{p,k}}$$

References:

Olga Sorkine-Hornung and Michael Rabinovich. LeastSquares Rigid Motion Using SVD

Canonicalization

 $\bar{\boldsymbol{\theta}} = \mathcal{K}\left(\boldsymbol{\beta}\right)$

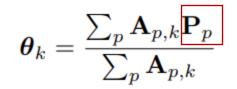
Autoencoder

$$ilde{\mathbf{P}} = \cup_k \left\{ \mathcal{D}_k (ar{\mathbf{R}} oldsymbol{ heta}_k + ar{\mathbf{t}}, oldsymbol{eta}_k)
ight\}$$

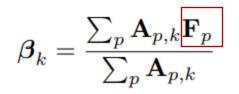
Method

Decompositions

Pose estimation



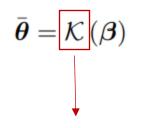
Descriptor estimation



References:

Olga Sorkine-Hornung and Michael Rabinovich. LeastSquares Rigid Motion Using SVD

Canonicalization



K is a fully connected network

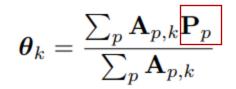
Autoencoder

$$ilde{\mathbf{P}} = \cup_k \left\{ \mathcal{D}_k (ar{\mathbf{R}} oldsymbol{ heta}_k + ar{\mathbf{t}}, oldsymbol{eta}_k)
ight\}$$

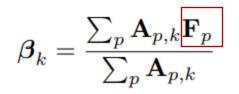
Method

Decompositions

Pose estimation



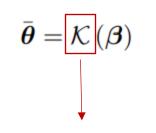
Descriptor estimation



References:

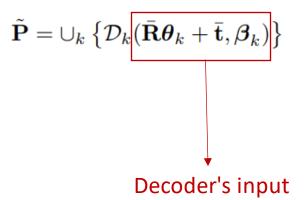
Olga Sorkine-Hornung and Michael Rabinovich. LeastSquares Rigid Motion Using SVD

Canonicalization



K is a fully connected network

Autoencoder



Loss Function

Decomposition Losses

Equivariance

Invariance

Equilibrium

Localization

$$\mathcal{L}_{\text{equivariance}} = \frac{1}{K} \sum_{k} \|\boldsymbol{\theta}_{k}^{a} - (\mathbf{T}^{a})(\mathbf{T}^{b})^{-1}\boldsymbol{\theta}_{k}^{b}\|_{2}^{2} .$$
$$\mathcal{L}_{\text{invariance}} = \frac{1}{K} \sum_{k} \|\boldsymbol{\beta}_{k}^{a} - \boldsymbol{\beta}_{k}^{b}\|_{2}^{2} .$$
$$\mathcal{L}_{\text{equilibrium}} = \frac{1}{K} \sum_{k} \|a_{k} - \frac{1}{K} \Sigma_{k} a_{k}\|_{2}^{2}$$
$$\mathcal{L}_{\text{localization}} = \frac{1}{K} \sum_{k} \frac{1}{a_{k}} \sum_{p} \mathbf{A}_{p,k} \|\boldsymbol{\theta}_{k} - \mathbf{P}_{p}\|_{2}^{2}$$

Loss Function

Canonicalization loss

Canonical $\mathcal{L}_{\text{canonical}} = \frac{1}{K} \sum_{k} \| (\bar{\mathbf{R}} \theta_k + \bar{\mathbf{t}}) - \bar{\theta}_k \|_2^2$.

Reconstruction loss

 $\label{eq:reconstruction} \quad \mathcal{L}_{recon} = CD\left(\bar{\mathbf{R}}\mathbf{P} + \bar{\mathbf{t}}, \; \tilde{\mathbf{P}}\right) \; .$

The loss functions are employed to train the **encoder**, the **decoder** and a network that represents a learnt **canonical frame** in an unsupervised fashion

Experimental Setup

Datasets

Shapenet (Core) 31747 shapes for training, and 7943 shapes for testing

For single-category experiments, they use:

- the airplane class
- the chair classes

All 13 object classes are used for multi-category experiments

SAPERET

References:

• Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An InformationRich 3D Model Repository

Experimental Setup

Baselines

Auto-encoder evaluation:

- 3D-PointCapsNet¹
- AtlasNetV2²

Registration:

- Deep Closest Points (DCP)³
- DeepGMR–RRI⁴
- DeepGMR–XYZ⁴

References:

- 1. Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3D Point Capsule Networks
- 2. Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir Kim, Bryan Russell, and Mathieu Aubry. Learning Elementary Structures for 3D Shape Generation and Matching
- 3. Yue Wang and Justin M Solomon. Deep Closest Point: Learning Representations for Point Cloud Registration
- 4. Wentao Yuan, Ben Eckart, Kihwan Kim, Varun Jampani, Dieter Fox, and Jan Kautz. DeepGMR: Learning Latent Gaussian Mixture Models for Registration

Experimental Results

Autoencoder performance

	Aligned			Unaligned		
	Airplane	Chair	Multi	Airplane	Chair	Multi
3D-PointCapsNet [58]	1.94	3.30	2.49	5.58	7.57	4.66
AtlasNetV2 [13]	1.28	2.36	2.14	2.80	3.98	3.08
Our method	0.96	1.99	1.76	1.08	2.65	2.25

Auto-encoding/reconstruction perfromance in terms of Chamfer distance

Experimental Results

Registration performance

	Airplane	Chair	Multi
Deep Closest Points [52]	0.318	0.160	0.131
DeepGMR-XYZ [56]	0.079	0.082	0.077
Our method-XYZ	0.024	0.027	0.070
DeepGMR-RRI [56]	0.0001	0.0001	0.0001
Our method-RRI	0.0006	0.0009	0.0016

Performance in terms of root mean-square error between registered and ground-truth points

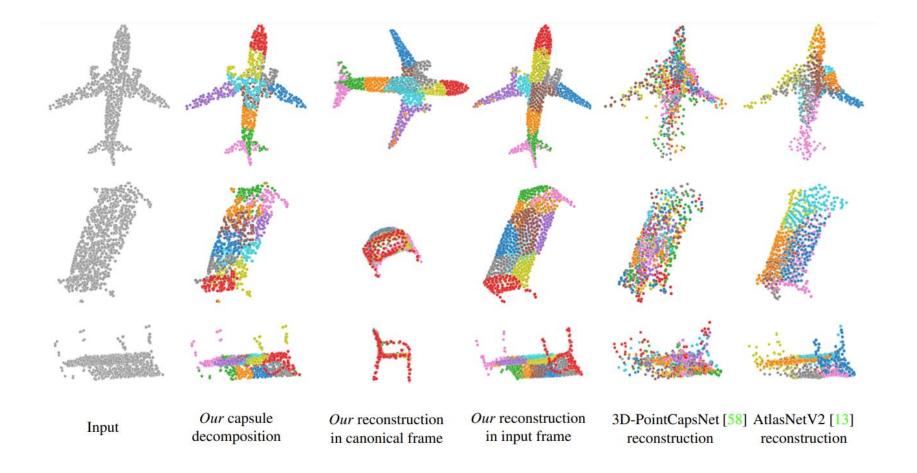
Experimental Results

Classification performance

	Aligned		Unaligned		
	SVM	K-Means	SVM	K-Means	
AtlasNetV2	94.07	61.66	71.13	14.59	
3D-PointCapsNet	93.81	65.87	64.85	17.12	
Our method	94.21	69.82	87.17	43.86	

Unsupervised classification using features extracted from the auto-encoder

Qualitative Results



Ablation Study

Number of points

	1024 pts	2500 pts
3D-PointCapsNet [58]	2.49	1.49
AtlasNetV2 [13]	2.14	1.22
Our method	1.76	0.97

Loss effect

Full	$\neg \mathcal{L}_{invar}$	$\neg \mathcal{L}_{canonical}$	$\neg \mathcal{L}_{equiv}$	$\neg \mathcal{L}_{localization}$	$\neg \mathcal{L}_{equilibrium}$
CD 1.08	1.09	1.09	1.16	1.45	1.61

Discussion of results

- This work achieves state of the art performance in autoencoder, point cloud registration and classification
- On pre-aligned data, this work achieves comparable performance with prior work but in the case of unaligned data, they outperform past work by a large margin

	Aligned			Unaligned		
	Airplane	Chair	Multi	Airplane	Chair	Multi
3D-PointCapsNet [58]	1.94	3.30	2.49	5.58	7.57	4.66
AtlasNetV2 [13]	1.28	2.36	2.14	2.80	3.98	3.08
Our method	0.96	1.99	1.76	1.08	2.65	2.25

	Al	igned	Unaligned		
	SVM	K-Means	SVM	K-Means	
AtlasNetV2	94.07	61.66	71.13	14.59	
3D-PointCapsNet	93.81	65.87	64.85	17.12	
Our method	94.21	69.82	87.17	43.86	

Limitations

- Point clouds are the only input allowed
- Experimentally selecting the number of capsules used
- This framework has not tested on scenes with multiple or occluded objects

Contributions (Recap)

This work proposes :

- Unsupervised learning on 3D point clouds using capsules
- Object-centric unsupervised learning

Past work:

• Requires tons of labeled data to yield state of the art results

This work shows:

 State of the art performance in unsupervised 3D point cloud registration, reconstruction and classification