CSC2457 3D & Geometric Deep Learning

Feb. 9, 2021

Presenter: Tao Wu

Instructor: Animesh Garg

Learning Generative Models of 3D Structures

- S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, H. Zhang

July 2020

Motivation Learning Generative Models of 3D Content

Motivation Learning Generative Models of 3D Content

Generative models

• generative: P(X) vs. discriminative: P(Y|X)

Contributions

Educational report

- Survey historical work and recent progress
- Show representations of 3D shapes and scenes
 - voxel grids, point cloud, implicit representations, triangle mesh
- Present prominent methodologies
 - probabilistic models, deep generative models, program synthesis, etc.
- Describe structure-aware synthesis
 - structure-aware: express 3D shapes and scenes using abstractions that allow manipulation of their high-level structure

Scope: *learned* generative models of *structured* 3D content

> Learned:

• **Determined with data** <-> By hand or rules

➤ Structured:

- **3D** shapes and scenes that are decomposed into sub-structures
- o **<->**
- a monolithic chunk of geometry

> Express 3D shapes and scenes using abstractions that allow manipulation of their high-level structure

- represent the geometry of the atomic structural elements
- represent the structural patterns

Representations of Part/Object Geometry

Voxel Grid

Point Cloud

Implicit Surface

Triangle Mesh

- Representations of Part/Object Geometry
- Representations of Structure

- Representations of Part/Object Geometry
- Representations of Structure
 - Segmented geometry

- Representations of Part/Object Geometry
- Representations of Structure
 - Segmented geometry
 - Part sets
 - an unordered set of atoms

- Representations of Part/Object Geometry
- Representations of Structure
 - Segmented geometry
 - Part sets
 - Relationship graphs

Representations of Part/Object Geometry

- Representations of Structure
 - Segmented geometry
 - Part sets
 - Relationship graphs
 - Hierarchies

Representations of Part/Object Geometry

- Representations of Structure
 - Segmented geometry
 - Part sets
 - Relationship graphs
 - Hierarchies
 - Hierarchical graphs

Representations of Part/Object Geometry

Representations of Structure

- Segmented geometry
- Part sets
- Relationship graphs
- Hierarchies
- Hierarchical graphs
- Programs

Input

circle(4,10) for(i<3) circle(-3*i+7,5) circle(-3*i+7,1) line(-3*i+7,4,-3*i+7,2,arrow) line(4,9,-3*i+7,6,arrow)</pre>

Program

Output

draw('Top','Rect',P=(6,0,0),G=(2,7,12))

for(i<2,'Trans',u=(0,0,12))
draw('Leg','Cub',P=(-7,-1,-8)
+(i×u),G=(12,2,2))</pre>

draw('Layer','Rect',P=(-7,0,0),G=(1,5,9))

> Program synthesis

• Constraint-based program synthesis

Classical Probabilistic Models

• Probabilistic graphical models

START : F

 $F \rightarrow [Left] F$

 $F \rightarrow [Leaf]$

 $F \rightarrow [Right] F$

 $F \rightarrow [\text{Left}] F \cup [\text{Right}] F$

Classical Probabilistic Models

- Probabilistic graphical models
- Probabilistic grammars
 - Context-free grammar (CFG)
 - Probabilistic CFG (PCFG)

(0.2)

(0.2)

(0.3)

(0.3)

- > Deep Generative Models
 - Autoregressive models

> Deep Generative Models

- Autoregressive models
- Deep latent variable models
 - VAE
 - GAN

Neural Networks for Different Structure Types

- Chains: recurrent neural networks (RNN)
- Trees: recursive neural networks (RvNN)
- Graphs: graph convolutional networks (GCN)

> Program synthesis

- Constraint-based program synthesis
- Neural program synthesis

Application: Visual Program Induction

Synthesize a plausible program that recreates an existing piece of 3D content

Recover shape-generating programs from an existing 3D shape

Recover shape-generating programs from an existing 3D shape

➤ Tulsiani et al. 2017

Recover shape-generating programs from an existing 3D shape

➤ Tulsiani et al. 2017

➤ Tian et al. 2019

Perform visual program induction directly from 2D images

Perform visual program induction directly from 2D images

Liu et al. 2019 \succ

Layout extrapolation

Input Image

Edited Image

Applications

Part-based Shape Synthesis

- Kalogerakis et al. 2012
- Huang et al. 2015: Deep Boltzmann Machine
- Sung et al. 2017: ComplementMe
- Li et al. 2017: GRASS
- etc.

Indoor Scene Synthesis

- Xu et al. 2013: Sketch2Scene
- Savva et al. 2016: PiGraph
- Wang et al. 2019: PlanIt
- Li et al. 2019: GRAINS
- etc.

Recap

- Learning structure-aware generative models of 3D shapes and scenes
- > Representations of individual structural atoms and structural patterns
- > Different generative modeling methods
- > Applications of generative technologies to 3D tasks