
CSC2457 3D & Geometric Deep 
Learning

Date:	March	2,	2021	
Presenter:	Tianxing	Li	

Instructor:	Animesh	Garg

Neural Sparse Voxel Fields 
Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, Christian Theobalt



Motivation and Main Problem
- Reminder:	we	are	trying	to	do	realistic	novel	view	synthesis	

- We’ve	recently	achieved	a	breakthrough	on	this	task	with	NeRF	

- But	…	NeRF	is	not	always	great,	and	can	be	extremely	slow



Applications of Realistic Rendering

Free	View	Synthesis	[Dai	et	al.	2017]



Motivation and Main Problem
- Good	news:	NSVF	appears	a	few	months	after	NeRF	

- It	appears	much	faster	and	better,	what	did	they	do?



Neural Sparse Voxel Fields (NSVF)

- Fast	and	high	quality	novel	view	synthesis,	extends	NeRF.	

- NeRF	wastes	a	lot	of	computation	by	sampling	in	empty	space.	

- Key	insight:	use	sparse	voxel	data	structure	to	enable	more	precise	
sampling	and	detailed	modelling	of	local	properties.	

- Result:	render	10	-	20x	faster	than	NeRF,	at	higher	quality



Recap: NeRF Sampling

For	each	pixel,	we	need	to	integrate	colours	along	its	viewing	ray



Recap: NeRF Sampling

- To	make	this	tractable,	we	need	to	sample	at	the	relevant	places	

- How	do	we	know	where	to	sample?



Recap: NeRF Sampling

NeRF	idea:	use	coarse	sampling	to	guide	next	round	of	sampling	
Issue:	we	use	a	lot	of	computation	sampling	on	empty	space!	



Motivating NSVF
- Can	we	remember	which	places	are	empty?	
- And	do	it	with	a	data	structure	that	is	multi-view	consistent?



Sparse Voxels
- Use	voxels	to	remember	which	places	we	need	to	sample	from	
- Note:	our	scene	representation	is	still	continuous



Sparse Voxels
- Checking	for	ray-voxel	intersections	(AABB	test)	is	very	quick!	
- But	there	may	be	many	(over	100K)	voxels,	can	we	find	the	voxels	we	
actually	intersect	quickly?



Voxel Scene Representation
- Use	an	octree	to	speed	the	search	up	
- If	intersection	occurs	with	voxel,	it	must	occur	with	its	bounding	volume

Source:	https://geidav.wordpress.com/2014/07/18/advanced-octrees-1-preliminaries-insertion-strategies-and-max-tree-depth/



Octrees

Don’t	want	to	check	every	voxel…	
imagine	there	are	millions	of	them



Octrees



Octrees

Only	have	to	check	children!



Getting the Details Right
- Use	of	learnable	32	dimensional	embedding	at	each	vertex	(8	corners	
of	voxel)	improves	detail	modelling	

- Supposed	to	model	local	“geometry,	materials,	colour”



NSVF Inference
- For	each	ray,	find	all	voxels	that	intersected	it	
- Sample	at	a	fixed	step	size	within	each	voxel	(1/8	of	its	length)	
- Accumulate	colour	along	ray



NSVF Inference Example

Segment	1 Segment	2

Step	Size	=	1/2	voxel	length



Segment	1 Segment	2

“Midpoint	rule”	to	do	piecewise	constant	approx.



Trilinear	interpolate	embedding	from	corners,	and	predict	
density	and	colour	

α = 1 − e−σ⋅Δ

Δ

σ, C



1)	Compute	segment	weight:													Ri = αi ⋅ T

If	T	is	below	some	threshold,	terminate	early

2)	Accumulate	colour:																						C ← C + Ci ⋅ Ri

3)	Decrease	transmittance:																T ← T − Ri

Transmittance	T	is	ratio	of	light	that	has	managed	to	reach	this	segment



Δ

σ, C

If	we	still	have	some	transmittance	left,	repeat	…

α = 1 − e−σ⋅Δ



If	we	run	out	of	samples	/	voxels	and	still	have	some	transmittance

C ← C + Cbackground ⋅ T

Assumes	a	constant	background	colour!



We’ve	roughly	explained	what	all	this	is	doing	
(with	some	difference	in	notation	for	clarity)



How do we get the voxels?
- At	the	beginning	of	training,	we	don’t	know	where	anything	is	

- So	we	can	start	with	a	dense	voxel	field	(everything	occupied)	

- Occasionally,	we	remove	voxels	if	all	its	corners	fall	below	a	threshold	
alpha

https://hedgekingottawa.ca/signs-you-need-to-prune-your-trees/



How do we get the voxels?
- Problem:	for	high	res,	there	may	be	too	many	voxels	to	begin	with!	

- Can	we	avoid	unnecessary	computation,	like	we	did	with	octrees?	

- Fix:	start	by	pruning	“big”	voxels,	then	progressively	subdivide,	and	repeat



Loss function

Encourages	transmittance	to	be	0	or	1



Other interesting details

- Storage	of	MLP	and	voxels	is	3.2	to	16	MB	depending	on	scene,	
compared	to	5	MB	for	NeRF	

- Uses	3-4	rounds	of	voxel	subdivision	

- Unlike	NeRF,	computation	is	not	constant	per	ray,	#	samples	depends	
on	#	voxels	intersected



Results and Discussion
“NSVF	is	typically	over	10	times	faster	than	the	state-of-the-art	(namely,	
NeRF)	…	”	



Results and Discussion
“…	while	achieving	better	quality.”	

It	looks	great	in	videos	too!		
https://youtu.be/RFqPwH7QFEI?t=118



Results and Discussion
“NSVF	can	be	easily	applied	to	scene	editing	and	composition.”	

Train	shared	MLP	on	each	individual	scene,	

then	composite	the	voxel	embeddings



Results and Discussion
“We	also	demonstrate	a	variety	of	challenging	tasks,	including	multi-
scene	learning,	free-viewpoint	rendering	of	a	moving	human,	and	
large-scale	scene	rendering.”



Critique / Limitations (from authors) 
- Self-pruning	threshold	set	to	0.5,	may	not	be	ideal	for	thin	structures	

- Complex	backgrounds	(no	voxel	intersection)	can’t	be	handled	

- Requires	known	camera	poses	

- Still	bad	for	complex	geometry	or	lighting	effects



Critique / Limitations (from me) 

- It’s	much	faster	than	NeRF,	but	still	not	real-time	(few	seconds	per	frame)	

- Though	we	expect	a	similar	speedup	to	inference,	training	time	is	never	
mentioned	

- Disentangling	better	sampling	from	detail	modelling:	what	if	we	
subdivided	more,	but	avoided	voxel	embeddings?	Would	the	model	suffer	
from	overfitting	to	embeddings	at	very	fine	levels?



Recap of Neural Sparse Voxel Fields 

- Fast	and	high	quality	novel	view	synthesis,	build	upon	NeRF.	

- NeRF	samples	in	empty	space	often,	and	bad	sampling	leads	to	slow	
and	blurry	renders.	

- Key	insight:	use	sparse	voxel	data	structure	to	1)	avoid	sampling	empty	
space	and	2)	enable	detailed	modelling	of	local	scene	properties.	

- Result:	render	10	-	20x	faster	than	NeRF,	at	higher	quality


