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Motivation

* NeRF is impressive on capturing appearance.
e But is that all we need?




Motivation

* NeRF is impressive on capturing appearance.
e But is that all we need?

* NeRF captures radiance but not material!

View synthesis Relighting
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Motivation

e Games / VR / AR — We need materials!

* Game Contents
* VR/AR applications such as object insertion



https://www.businessinsider.com/uncharted-4-photos-2016-5

Motivation

* Why is it challenging?
* |ll-posed inverse problem.

e Appearance is correlated to both material, lighting and geometry.
e Same appearance leads to multiple solutions.




Prior Works

* Material Capturing

* Light stage settings: accurate but bulky.

e Portable capturing with cellphone camera and flash.
* Mesh and Voxel representation cannot handle fine details.
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Prior Works

* Material Capturing

* Light stage settings: accurate but bulky.

* Portable capturing with cellphone camera and flash. ]
* Mesh and Voxel representation cannot handle fine details.

* NeRF |l  Extend NeRF to

* Impressive results and can capture fine details. capture materials!
* Do not handle material properties.




Contributions

e Task

* The ill-posed problem of jointly capturing material and geometry from multi-view images.
* Portable content capturing is important for Game / VR / AR.
* Prior works either do not handle material (NeRF) or cannot capture details (Mesh, Voxel).

e Key Insight
* Following prior works, using controlled lighting condition to constrain ambiguity.

* Extend NeRF to predict material properties and optimize with photometric loss.
* Adapt NeRF’s ray marching to render radiance with geometry, lighting and material.

e Result

* Given cellphone captured videos (under controlled lighting condition),
* We get relightable high-quality (fine details) implicit function representation of objects.



Background — Reflectance

e Reflectance

* We see appearance because surfaces reflect light.

Light
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Background — Reflectance

 Diffuse (Lambertian)
* Reflects light uniformly in all directions. Diffuse + Specular = Combined

e E.g. the wall. N
e Specular + :

» Reflected light depends on viewing direction.

* E.g. the mirror. Light camere 7




Background — Reflectance

 Bidirectional reflectance distribution function (BRDF)
 BRDF is a surface material property describing how light reflects

fr(X7 Wi, wO)
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Background — Rendering Equation

Rendering equation defines how light scatters in a
scene

AA/cosb

L (x,w,,\t)=L_ (x,w,,At) + / (X, w,w,, A t)L, (x,w:, A, t)(w, -

Outgoing light Reflected Light
Incoming light
Emitted light

Hemisphere on point
BRDF

Irradiance factor




Task Definition

* One step further than NeRF - Capturing material
* Inputis multi-view images with collocated camera-light setup.

e Outputis a Neural Reflectance Field.




Task Definition

* One step further than NeRF - Capturing material

* Input is multi-view images with collocated camera-light setup.
e Outputis a Neural Reflectance Field.
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Task Definition

* Input image samples
 Robot arm
e Galaxy Note 8




Task Definition

* One step further than NeRF - Capturing material

* Input is multi-view images with collocated camera-light setup.
e Outputis a Neural Reflectance Field.
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Task Definition

* Goal of Neural Reflectance Field
* Render with novel view and light
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Task Definition

 Why collocated camera-light setup?




Task Definition

* |ll-posedness
e Same appearance leads to multiple solutions.
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Task Definition

 Why collocated camera-light setup?

* Known single light source — Removes the integral
* Use point light to approximate the cellphone flash
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Method

* General Idea
 Jointly optimize material and geometry with re-render loss.

Re-rendering ! =
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Method

 Neural Reflectance Fields

e At every 3D location, this MLP predicts
e Volume density (1-channel)
e Surface normal (3-channel)
e Reflectance (4-channel)
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Method

* Material / BRDF Parameters

 The BRDF used in this paper is a simplified microfacet model.
e Use diffuse albedo (3-channel) and roughness (1-channel) to describe reflectance

Diffuse + Specular = Combined
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Method

» Reflectance-Aware Ray Marching

* At any sampled point on the ray, use material and lighting to render the current location.
e Use “alpha compositing” for sampled points along a ray.
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Method

» Reflectance-Aware Ray Marching

* At any sampled point on the ray, use material and lighting to render the current location.
e Use “alpha compositing” for sampled points along a ray.
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Method

» Reflectance-Aware Ray Marching

* At any sampled point on the ray, use material and lighting to render the current location.
e Use “alpha compositing” for sampled points along a ray.
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Method

* Supervision
e Re-render L2 Loss GT Re-rendering
e Regularization on transmittance (either O or 1)
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Method

* Quick recap
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Method

* Efficiency

* How many queries do we need to render an N, = HXW image?

?

N. pixelN sample




Method

* Efficiency

* How many queries do we need to render an N, = HXW image?

N pixelN sampleN light N Isample




Method

* Speed-Up Inference
* Precomputea light transmittance volume
* Query for light transmittance will be interpolated from the pre-computation

: Frustrum of the light,

Nhght Nlplxel leample i.e. the transmittance volume

—— :Alightray in the volume
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e :Adaptively sampled point

[~ :Scene content
(a sphere on a flat plane)

a» :Shadow




Method

* Speed-Up Inference
* Precomputea light transmittance volume

* Query for light transmittance will be interpolated from the pre-computation

N pixelN sample + N lightN lpixelN Isample

L

: Frustrum of the light,

: Scene content

: Shadow

i.e. the transmittance volume

: A light ray in the volume AR @

: Adaptively sampled points

(a sphere on a flat plane) ',o""‘ -------




Results

* Efficiency
* Training time: ~2 days on 4 RTX 2080Ti
* Inference time: 30 seconds for a 512x512 image.




Results

 Evaluation
 Comparison with prior works on relighting
e Results of re-rendering and relighting

* Generality
e Results on a human face.
e Results on a furry object.

* Object Insertion Demo
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Captured image [Nam et al. 2018] [Bi et al. 2020] [Nam et al. 2018] [Bi et al. 2020]

Novel collocated view and light Novel non-collocated view and light




Captured image [Nam et al. 2018] [Bi et al. 2020] Ours

(GT) (Mesh) (Voxel) (Implicit Function)
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Results

e Human face

Captured images Our renderings



Results

* Furry Object
e With a different BRDF

Captured images Our renderings



Results

* Object Insertion
 Voxelize the implicit function (5123) and render with Blender.




Discussion

* Conclusion from results

* Neural Reflectance Fields enables high-quality relighting and view synthesis.
* The method enables capturing fine details and improves material capturing.

* Better-to-have results
* Visualization of re-rendered normal and material properties.



Limitation

e Restricted lighting condition

* |t assumes that cellphone flash is the only light source. This is not convenient
to satisfy in real-world.

* Naive lighting model (point light).

* Rendering speed
* The run-time efficiency during inference is not applicable in real-world.




Follow-up

* NeRD: Neural Reflectance Decomposition from Image Collections

* Removes the lighting assumption during capturing
e Input is multi-view images (Same as NeRF)

* Qutput
* avolumetric MLP encoding material and volume density per-location, and

e per-image environmentillumination.
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Follow-up

* NeRD: Neural Reflectance Decomposition from Image Collections

* Removes the lighting assumption during capturing
e Input is multi-view images (Same as NeRF)
* Qutput
* avolumetric MLP encoding material and volume density per-location, and
e per-image environmentillumination.

 How to constrain the additional ambiguity?
* Introduce a bottleneck network structure for material to constrain its freedom.



Contributions (Recap)

e Task

* The ill-posed problem of jointly capturing material and geometry from multi-view images.
* Portable content capturing is important for Game / VR / AR.
* Prior works either do not handle material (NeRF) or cannot capture details (Mesh, Voxel).

e Key Insight
* Following prior works, using controlled lighting condition to constrain ambiguity.

* Extend NeRF to predict material properties and optimize with photometric loss.
* Adapt NeRF’s ray marching to render radiance with geometry, lighting and material.

e Result

* Given cellphone captured videos (under controlled lighting condition),
* We get relightable high-quality (fine details) implicit function representation of objects.



