CSC2457 3D & Geometric Deep Learning

Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations Vincent Sitzmann, Michael Zollhöfer and Gordon Wetzstein

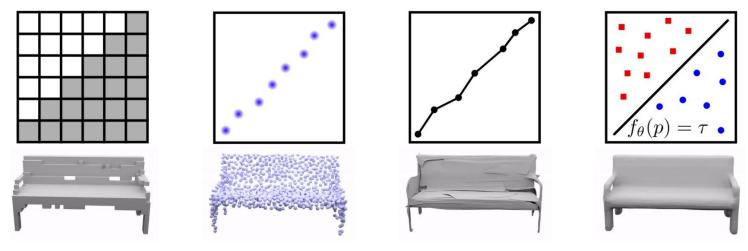
Feb 23rd

Presenter: Shayan Shekarforoush

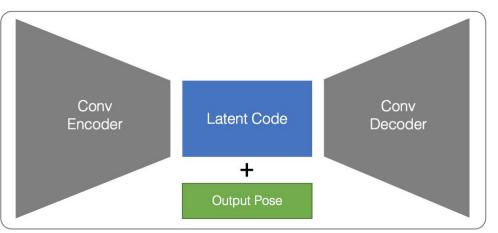
Instructor: Animesh Garg

Learning Scene Representation

• With 3D Bias:

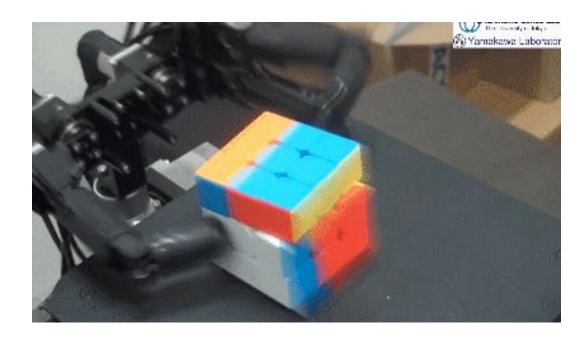


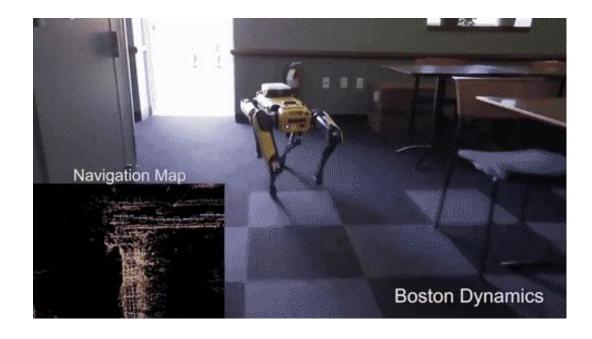
• Or not:



Applications

Downstream tasks





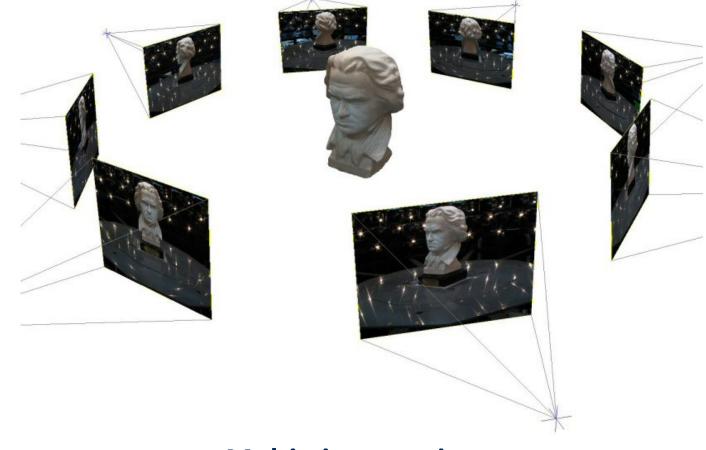
3D supervision

3D supervision

2D image + Camera pose

Geometry

Geometry + Appearance



Multi-view consistency

Voxel resolutions

Voxel resolutions

Point cloud sparsity

Contributions

- A continuous, 3D structure aware, neural scene representation encoding geometry and appearance a multi-view consistent manner.
 - Along with a Differentiable ray marching algorithm for rendering.
- End-to-end training without explicit 3D supervision.
- Generalizable to other geometry or appearance.
- Evaluation in:
 - Novel view synthesis.
 - Few-shot reconstruction.
 - ...

Problem Setting

Input data:

,... }

2D image:

$$\mathcal{I}_i \in \mathbb{R}^{H \times W \times 3}$$

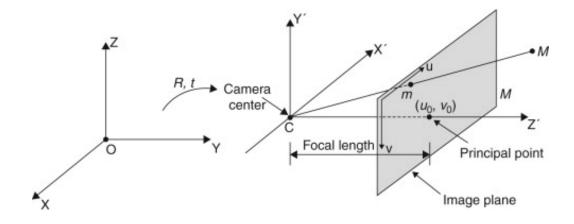
Problem Setting

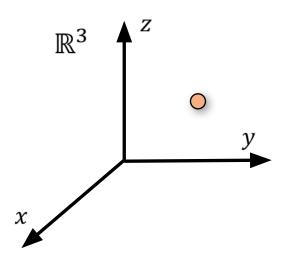
Input data:

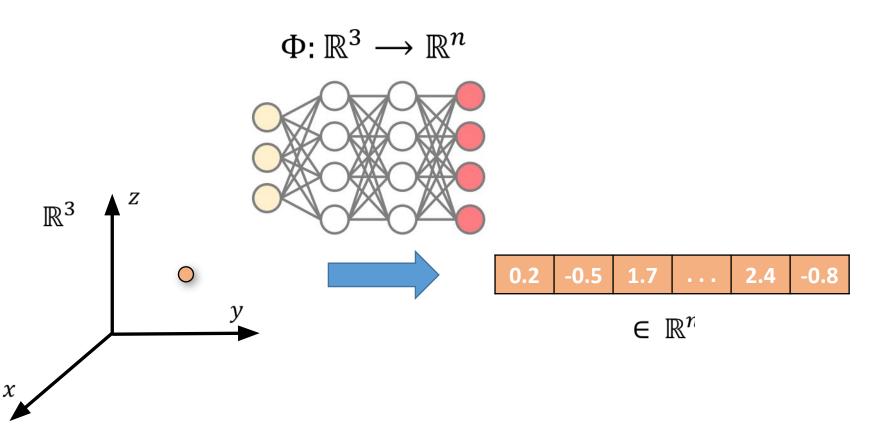
2D image: $\mathcal{I}_i \in \mathbb{R}^{H \times W \times 3}$

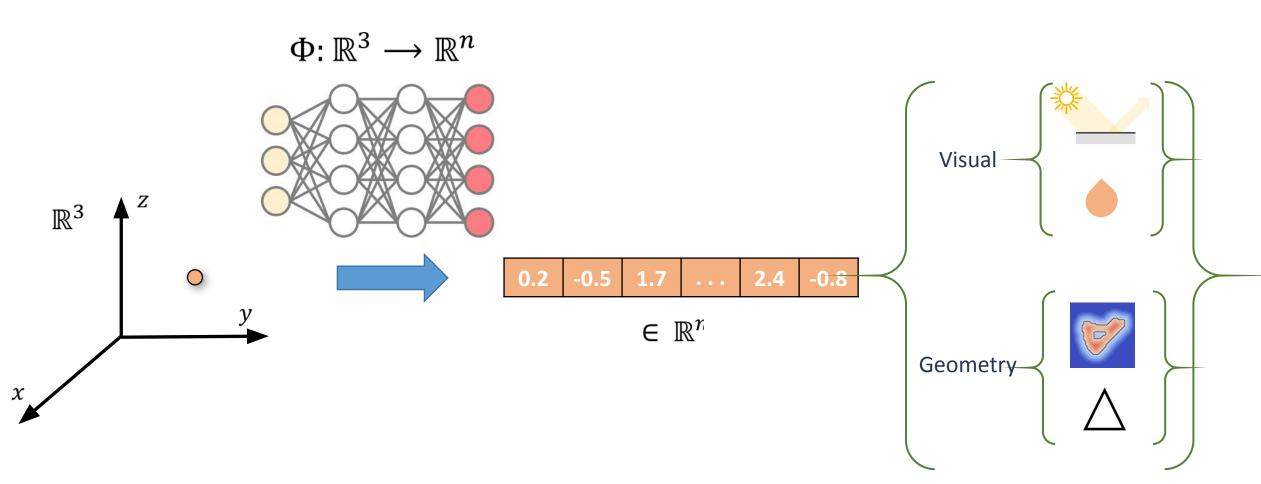
Extrinsic matrix: $\mathbf{E}_i = \left[\mathbf{R} | \mathbf{t}\right] \in \mathbb{R}^{3 \times 4}$

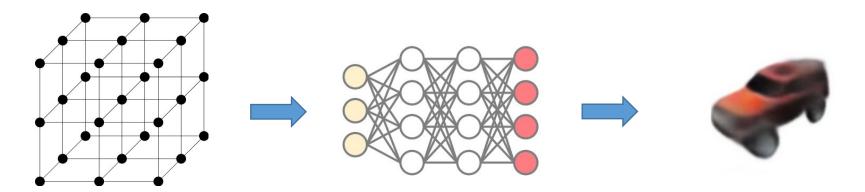
Intrinsic matrix: $\mathbf{K}_i \in \mathbb{R}^{3 \times 3}$

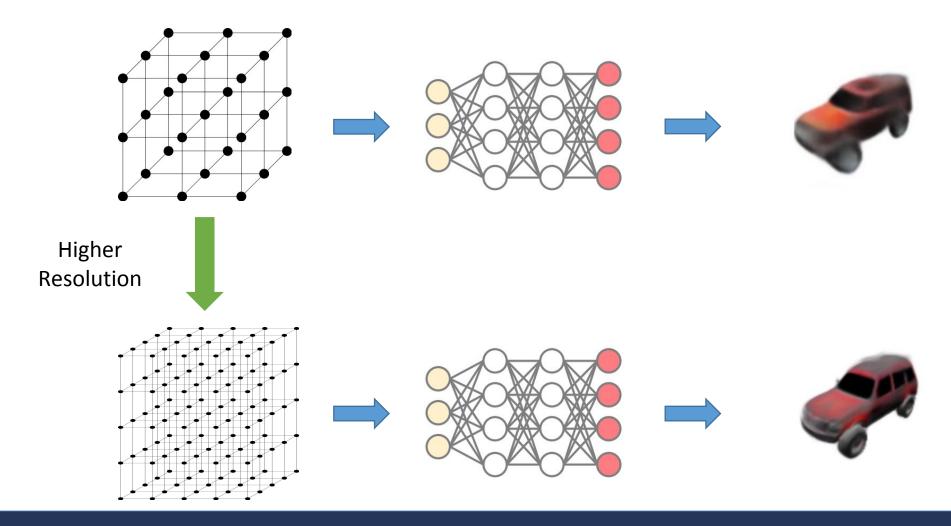






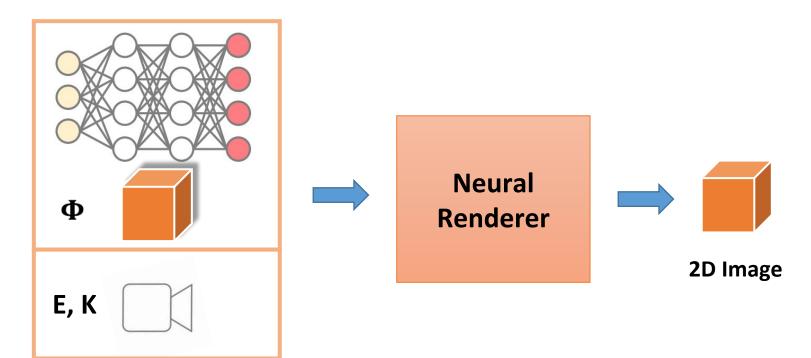






Neural Rendering

$$\Theta: \mathcal{X} \times \mathbb{R}^{3 \times 4} \times \mathbb{R}^{3 \times 3} \to \mathbb{R}^{H \times W \times 3}, \quad (\Phi, \mathbf{E}, \mathbf{K}) \mapsto \Theta(\Phi, \mathbf{E}, \mathbf{K}) = \mathcal{I}$$



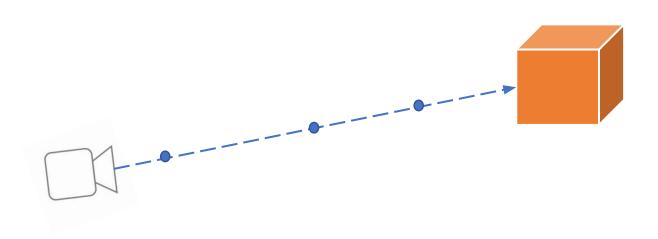
Neural Rendering

$$\Theta: \mathcal{X} \times \mathbb{R}^{3 \times 4} \times \mathbb{R}^{3 \times 3} \to \mathbb{R}^{H \times W \times 3}, \quad (\Phi, \mathbf{E}, \mathbf{K}) \mapsto \Theta(\Phi, \mathbf{E}, \mathbf{K}) = \mathcal{I}$$

- Ray Marching
- Pixel Generator

Parametrize ray marching out of pixel (u, v):

$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \begin{pmatrix} u \\ v \\ d \end{pmatrix} - \mathbf{t})$$



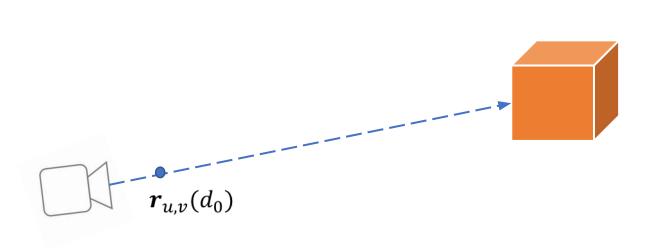
Parametrize ray marching out of pixel (u, v): $\mathbf{r}_{u,v}(d) = \mathbf{R}^T(\mathbf{K}^{-1} \begin{pmatrix} u \\ v \\ d \end{pmatrix} - \mathbf{t})$ Intersection as optimization:

$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \begin{pmatrix} u \\ v \\ d \end{pmatrix} - \mathbf{t})$$

$$rg \min \ d$$
 Surface s.t. $\mathbf{r}_{u,v}(d) \in \Omega$ $d>0$

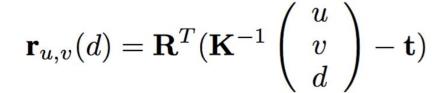
Parametrize ray marching out of pixel (u, v):

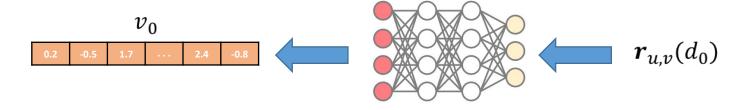
$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \left(egin{array}{c} u \ v \ d \end{array}
ight) - \mathbf{t})$$

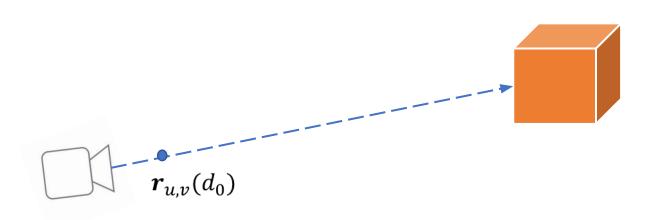


```
1: function FINDINTERSECTION(\Phi, \mathbf{K}, \mathbf{E}, (u, v))
2: d_0 \leftarrow 0.05
3: (\mathbf{h}_0, \mathbf{c}_0) \leftarrow (\mathbf{0}, \mathbf{0})
4: for i \leftarrow 0 to max\_iter do
5: \mathbf{x}_i \leftarrow \mathbf{r}_{u,v}(d_i)
6: \mathbf{v}_i \leftarrow \Phi(\mathbf{x}_i)
7: (\delta, \mathbf{h}_{i+1}, \mathbf{c}_{i+1}) \leftarrow LSTM(\mathbf{v}, \mathbf{h}_i, \mathbf{c}_i)
8: d_{i+1} \leftarrow d_i + \delta
9: return \mathbf{r}_{u,v}(d_{max\_iter})
```

Parametrize ray marching out of pixel (u, v):



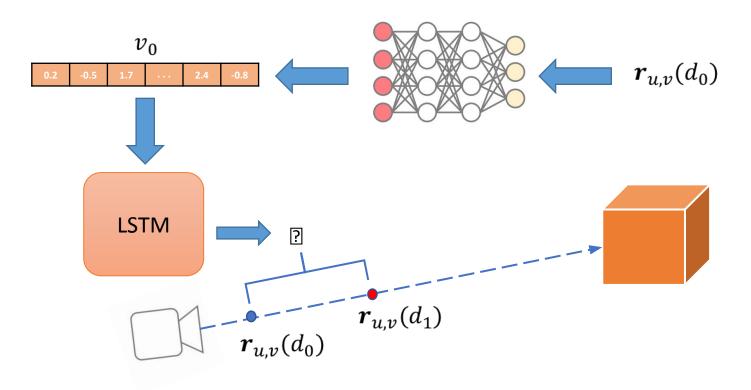




```
1: function FINDINTERSECTION(\Phi, \mathbf{K}, \mathbf{E}, (u, v))
2: d_0 \leftarrow 0.05
3: (\mathbf{h}_0, \mathbf{c}_0) \leftarrow (\mathbf{0}, \mathbf{0})
4: for i \leftarrow 0 to max\_iter do
5: \mathbf{x}_i \leftarrow \mathbf{r}_{u,v}(d_i)
6: \mathbf{v}_i \leftarrow \Phi(\mathbf{x}_i)
7: (\delta, \mathbf{h}_{i+1}, \mathbf{c}_{i+1}) \leftarrow LSTM(\mathbf{v}, \mathbf{h}_i, \mathbf{c}_i)
8: d_{i+1} \leftarrow d_i + \delta
9: return \mathbf{r}_{u,v}(d_{max\_iter})
```

Parametrize ray marching out of pixel (u, v):

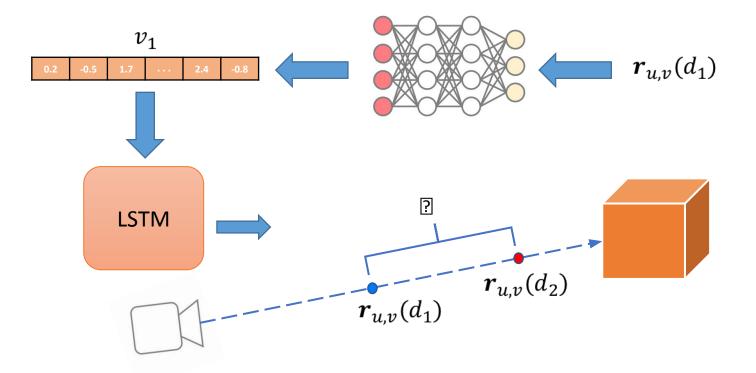
$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \begin{pmatrix} u \\ v \\ d \end{pmatrix} - \mathbf{t})$$



- 1: **function** FINDINTERSECTION(Φ , **K**, **E**, (u, v)) $d_0 \leftarrow 0.05$
- $(\mathbf{h}_0, \mathbf{c}_0) \leftarrow (\mathbf{0}, \mathbf{0})$
- for $i \leftarrow 0$ to max_iter do
- $\mathbf{x}_i \leftarrow \mathbf{r}_{u,v}(d_i)$
- $\mathbf{v}_i \leftarrow \Phi(\mathbf{x}_i)$
- $(\delta, \mathbf{h}_{i+1}, \mathbf{c}_{i+1}) \leftarrow LSTM(\mathbf{v}, \mathbf{h}_i, \mathbf{c}_i)$
- $d_{i+1} \leftarrow d_i + \delta$
- 9: return $\mathbf{r}_{u,v}(d_{max_iter})$

Parametrize ray marching out of pixel (u, v):

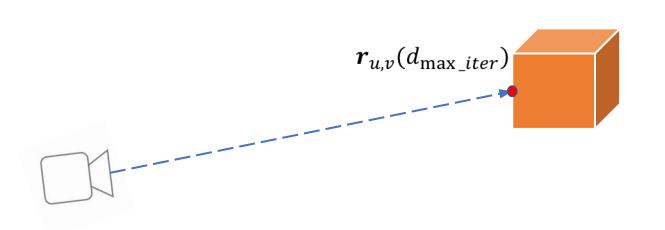
$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \begin{pmatrix} u \\ v \\ d \end{pmatrix} - \mathbf{t})$$



```
1: function FINDINTERSECTION(\Phi, \mathbf{K}, \mathbf{E}, (u, v))
2: d_0 \leftarrow 0.05
3: (\mathbf{h}_0, \mathbf{c}_0) \leftarrow (\mathbf{0}, \mathbf{0})
4: for i \leftarrow 0 to max\_iter do
5: \mathbf{x}_i \leftarrow \mathbf{r}_{u,v}(d_i)
6: \mathbf{v}_i \leftarrow \Phi(\mathbf{x}_i)
7: (\delta, \mathbf{h}_{i+1}, \mathbf{c}_{i+1}) \leftarrow LSTM(\mathbf{v}, \mathbf{h}_i, \mathbf{c}_i)
8: d_{i+1} \leftarrow d_i + \delta
9: return \mathbf{r}_{u,v}(d_{max\_iter})
```

Parametrize ray marching out of pixel (u, v):

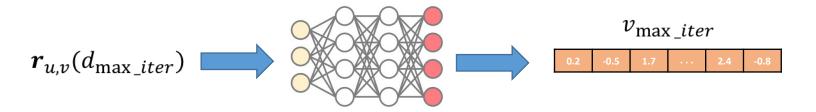
$$\mathbf{r}_{u,v}(d) = \mathbf{R}^T (\mathbf{K}^{-1} \left(egin{array}{c} u \ v \ d \end{array}
ight) - \mathbf{t})$$

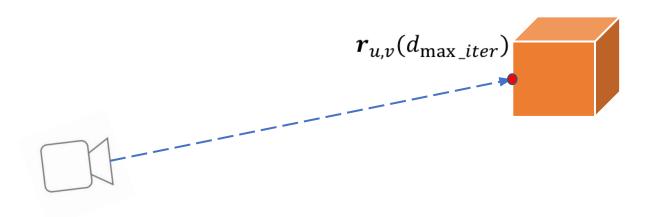


```
1: function FINDINTERSECTION(\Phi, \mathbf{K}, \mathbf{E}, (u, v))
2: d_0 \leftarrow 0.05
3: (\mathbf{h}_0, \mathbf{c}_0) \leftarrow (\mathbf{0}, \mathbf{0})
4: for i \leftarrow 0 to max\_iter do
5: \mathbf{x}_i \leftarrow \mathbf{r}_{u,v}(d_i)
6: \mathbf{v}_i \leftarrow \Phi(\mathbf{x}_i)
7: (\delta, \mathbf{h}_{i+1}, \mathbf{c}_{i+1}) \leftarrow LSTM(\mathbf{v}, \mathbf{h}_i, \mathbf{c}_i)
8: d_{i+1} \leftarrow d_i + \delta
9: return \mathbf{r}_{u,v}(d_{max\_iter})
```

Pixel Generator

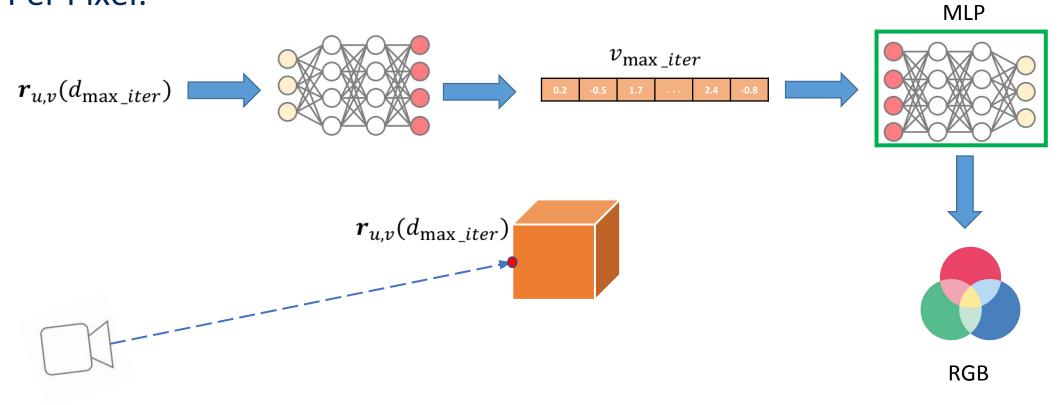
Per Pixel:



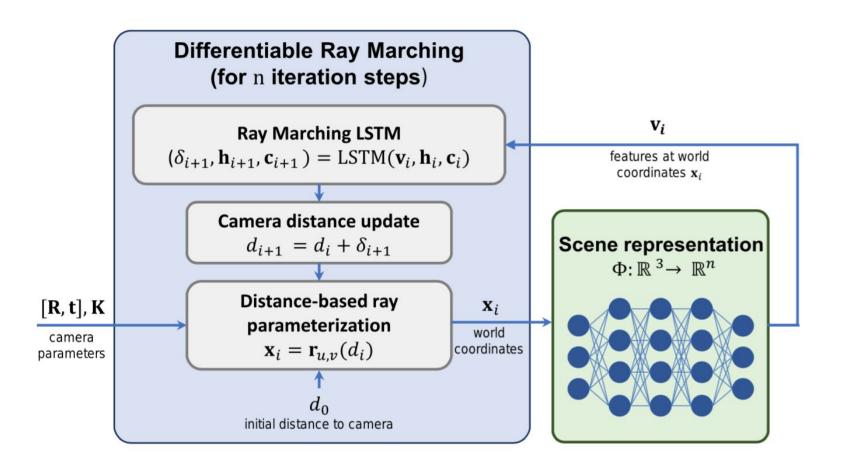


Pixel Generator

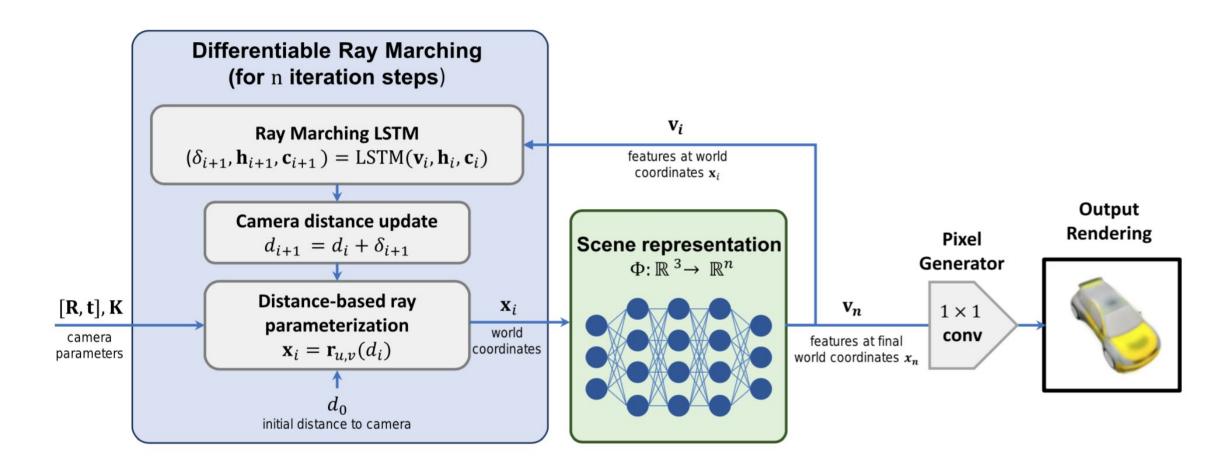
Per Pixel:



General Framework



General Framework



 $\Phi_{\mathbf{1}}$

 Φ_{M}

 Φ_2

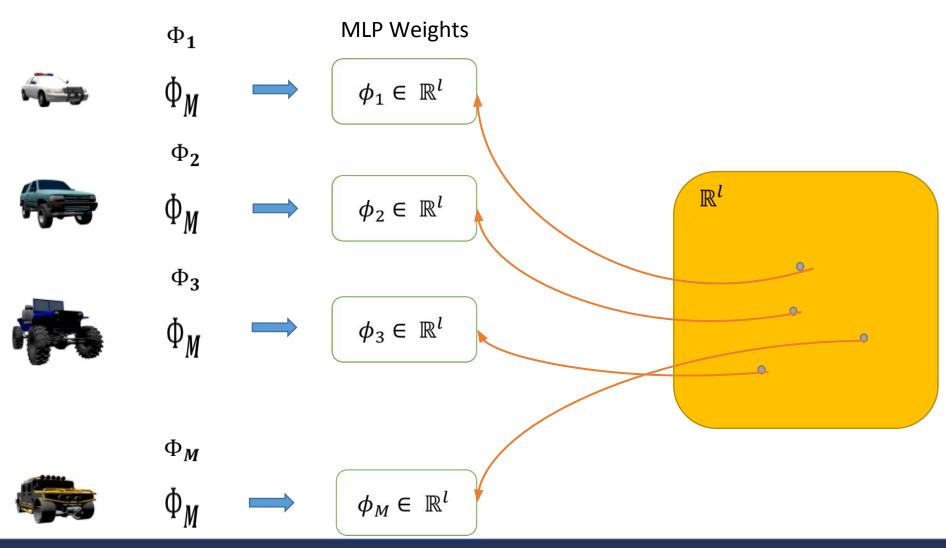
 Φ_{M}

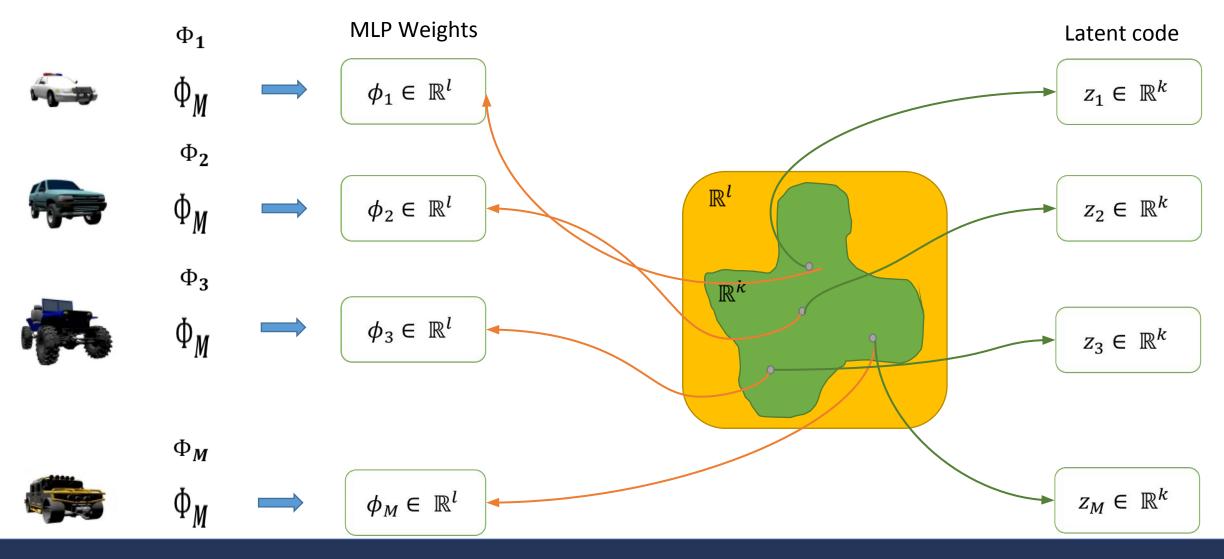
 Φ_3

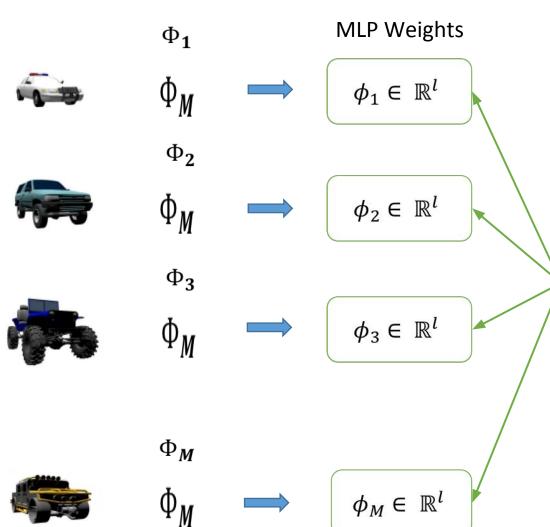
 Φ_{M}

 Φ_{M}

 Φ_{M}







Latent code

$$z_1 \in \mathbb{R}^k$$

Hypernetwork (MLP)

$$\Psi: \mathbb{R}^k o \mathbb{R}^l$$

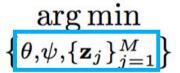
$$\mathbf{z}_j \mapsto \Psi(\mathbf{z}_j) = \phi_j$$

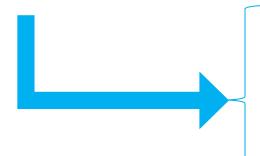
$$z_2 \in \mathbb{R}^k$$

$$z_3 \in \mathbb{R}^k$$

$$z_M \in \mathbb{R}^k$$

Joint optimization:



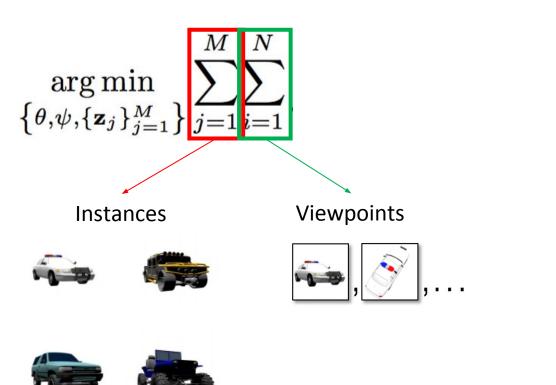


heta: Neural Renderer

 ψ : Hypernetwork

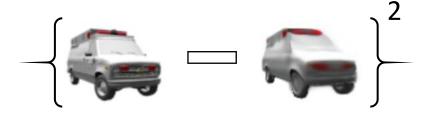
z: Scene latent code

Joint optimization using SGD:



Joint optimization using SGD:

$$\operatorname*{arg\,min}_{\left\{\theta,\psi,\left\{\mathbf{z}_{j}\right\}_{j=1}^{M}\right\}} \sum_{j=1}^{M} \sum_{i=1}^{N} \underbrace{\|\Theta_{\theta}(\Phi_{\Psi(\mathbf{z_{j}})},\mathbf{E}_{i}^{j},\mathbf{K}_{i}^{j}) - \mathcal{I}_{i}^{j}\|_{2}^{2}}_{\mathcal{L}_{\mathrm{img}}} +$$



L2 reconstruction loss

Joint optimization using SGD:

$$\underset{\left\{\theta, \psi, \left\{\mathbf{z}_{j}\right\}_{j=1}^{M}\right\}}{\operatorname{arg\,min}} \sum_{j=1}^{M} \sum_{i=1}^{N} \underbrace{\left\|\Theta_{\theta}(\Phi_{\Psi(\mathbf{z_{j}})}, \mathbf{E}_{i}^{j}, \mathbf{K}_{i}^{j}) - \mathcal{I}_{i}^{j}\right\|_{2}^{2}}_{\mathcal{L}_{\text{img}}} + \underbrace{\lambda_{dep} \|\min(\mathbf{d}_{i,final}^{j}, \mathbf{0})\|_{2}^{2}}_{\mathcal{L}_{\text{depth}}} + \underbrace{\left\{\left(\mathbf{d}_{i,final}^{j}, \mathbf{0}\right)\right\|_{2}^{2} + \left(\mathbf{d}_{i,final}^{j}, \mathbf{0}\right)\right\|_{2}^{2}}_{\mathcal{L}_{\text{depth}}} + \underbrace{\left\{\left(\mathbf{d}_{i,final}^{j}, \mathbf{0}\right)\right\|_{2}^{2} + \left(\mathbf{d}_{i,final}^{j}, \mathbf{0}\right)\right\}_{i=1}^{2}}_{\mathcal{L}_{\text{depth}}} + \underbrace{\left\{\left(\mathbf{d}_{i,final}^{j}, \mathbf{0}\right)\right\|_{2}^{2} + \left(\mathbf{d}_{i,final}^{j}, \mathbf{0}\right)}_{\mathcal{L}_{\text{depth}}} + \underbrace{\left(\mathbf{d}_{i,final}^{j}, \mathbf{0}\right)\right\|_{2}^{2}}_{\mathcal{L}_{\text{depth}}} + \underbrace{\left(\mathbf{d}_{i,final}^{j}, \mathbf{0}\right)\right\|_{2}^{2}}_{\mathcal{L}_$$

L2 reconstruction loss

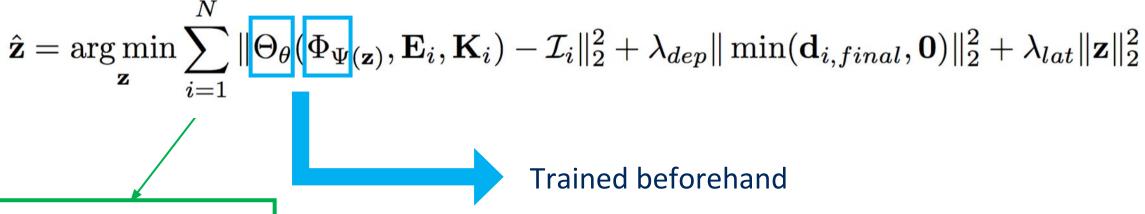
Positive depth

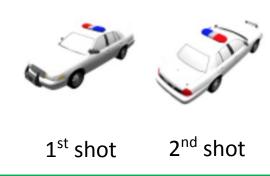
Joint optimization using SGD:

$$\arg \min_{\left\{\theta,\psi,\left\{\mathbf{z}_{j}\right\}_{j=1}^{M}\right\}} \sum_{j=1}^{M} \sum_{i=1}^{N} \underbrace{\|\Theta_{\theta}(\Phi_{\Psi(\mathbf{z}_{j})},\mathbf{E}_{i}^{j},\mathbf{K}_{i}^{j}) - \mathcal{I}_{i}^{j}\|_{2}^{2}}_{\mathcal{L}_{img}} + \underbrace{\lambda_{dep}\|\min(\mathbf{d}_{i,final}^{j},\mathbf{0})\|_{2}^{2}}_{\mathcal{L}_{depth}} + \underbrace{\lambda_{lat}\|\mathbf{z}_{j}\|_{2}^{2}}_{\mathcal{L}_{latent}} .$$

$$= \underbrace{\left\{\mathbf{E}_{i}^{j}\right\}_{j=1}^{M}}_{\mathbf{L}_{2}^{j}} \left\{\mathbf{E}_{i}^{j}\right\}_{j=1}^{M} \left\{\mathbf{E}_{i}^{j}\right\}_{j=1}^{M}$$

Few-shot (N = 1, 2):





Shepard Metzler

- 7 element objects
- Novel view synthesis on:
 - Training set
 - Few-shot on 100 test objects

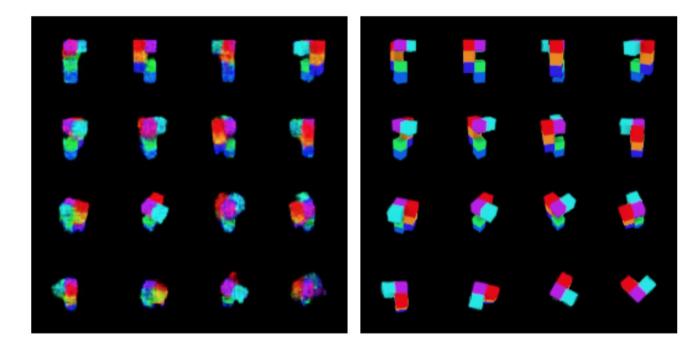


Figure 2: Shepard-Metzler object from 1k-object training set, 15 observations each. SRNs (right) outperform dGQN (left) on this small dataset.

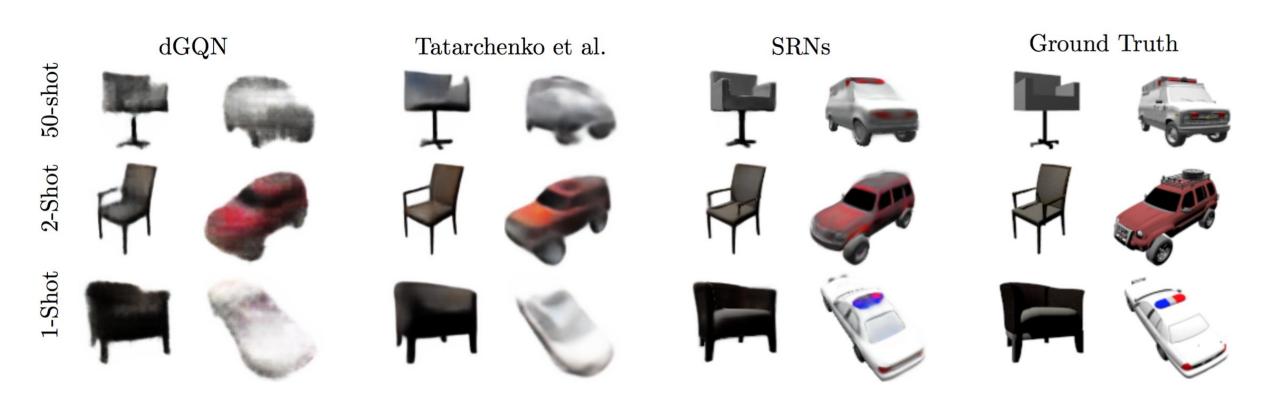
ShapeNet

- Cars and Chairs
- Novel view synthesis on:
 - Training set.
 - Few-shot on official test objects.

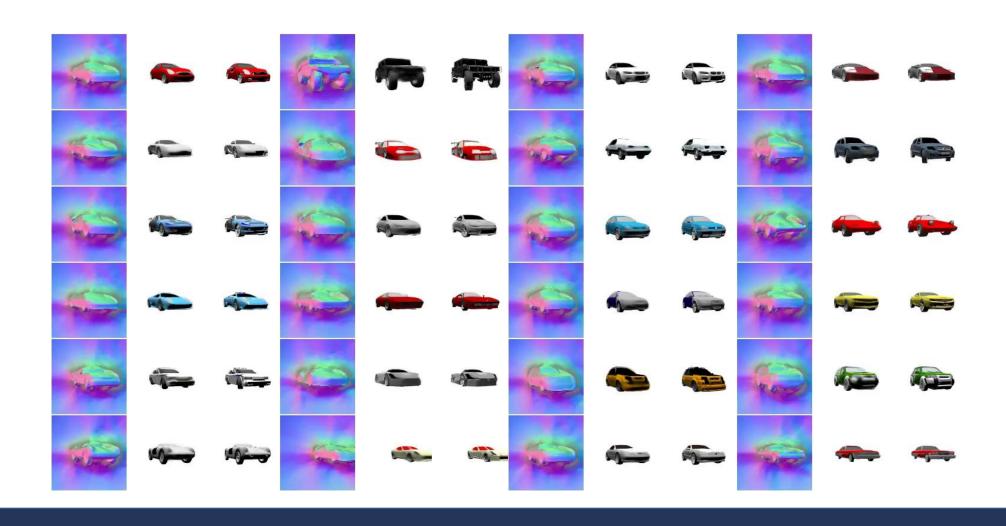
Figure 7: Single- (left) and two-shot (both) reference views.

	50 images (training set)		2 im	2 images		Single image	
	Chairs	Cars	Chairs	Cars	Chairs	Cars	
TCO [1]	24.31 / 0.92	20.38 / 0.83	21.33 / 0.88	18.41 / 0.80	21.27 / 0.88	18.15 / 0.79	
WRL [4]	24.57 / 0.93	19.16 / 0.82	22.28 / 0.90	17.20 / 0.78	22.11 / 0.90	16.89 / 0.77	
dGQN [2]	22.72 / 0.90	19.61 / 0.81	22.36 / 0.89	18.79 / 0.79	21.59 / 0.87	18.19 / 0.78	
SRNs	26.23 / 0.95	26.32 / 0.94	24.48 / 0.92	22.94 / 0.88	22.89 / 0.91	20.72 / 0.85	

ShapeNet

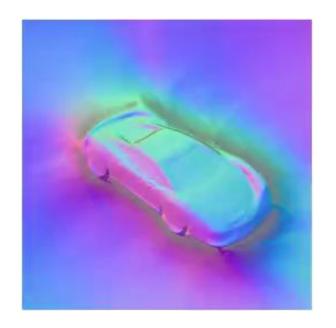


ShapeNet



Latent space interpolation

Camera pose extrapolation

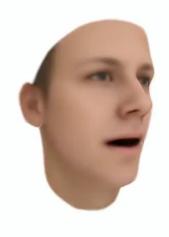


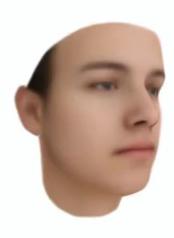
Camera zoom

Camera rotation

Basel face model

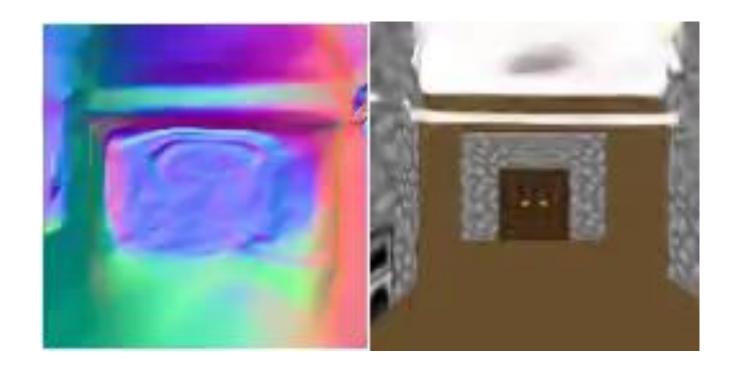
- Available disentangled latent:
 - Identity
 - Expression





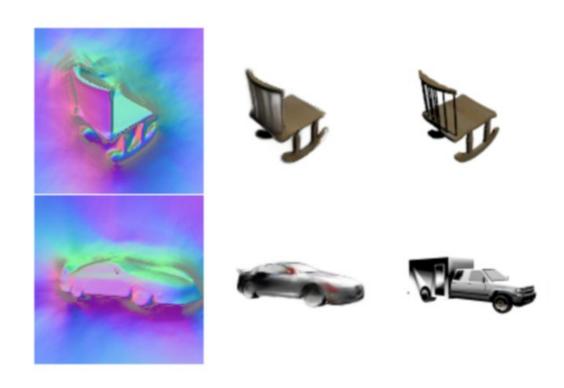
Minecraft room

Room scale scene



Critique / Limitations / Open Issues

- Availability of camera pose?
- Effects of view or lighting?
- Failure cases.



Critique / Limitations / Open Issues

- Modeling and architectural choices:
 - Pixel generator:
 - MLP vs CNN.
 - Texture details (Using positional encoding or sinusoidal activation function(Siren))
 - Computationally expensive hypernetwork ($\approx 10^7$ parameters).
 - What if we use Auto-Encoder? (instead of Auto-Decoder).
 - Meta learning (MetaSDF).
 - Ray marching
 - Expensive feed-forward of scene function for each step.
 - Weak convergence.

Contributions (Recap)

- A continuous, 3D structure aware, neural scene representation encoding geometry and appearance a multi-view consistent manner.
 - Along with a Differentiable ray marching algorithm for rendering.
- End-to-end training without explicit 3D supervision.
- Generalizable to other geometry or appearance.
- Evaluation in:
 - Novel view synthesis.
 - Few-shot reconstruction.
 - •

Thank you!