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Contributions

e An off-policy maximum entropy deep reinforcement learning algorithm
o Sample-efficient
o Robustness to noise, random seed and hyperparameters
o Scale to high-dimensional observation/action space
e Theoretical Results
o Theoretical framework of soft policy iteration
o Derivation of soft-actor critic algorithm
e Empirical Results
o SAC outperforms SOTA model-free deep RL methods, including DDPG,
PPO and Soft Q-learning, in terms of the policy’s optimality, sample
complexity and stability.
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Main Problem: Sample Inefficiency

e Number of times the agent must interact with the environment in order to
learn a task

e Good sample complexity is the first prerequisite for successful skill
acquisition.

e Learning skills in the real world can take a substantial amount of time
o can get damaged through trial and error



Main Problem: Sample Inefficiency

e "Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning
and Large-Scale Data Collection", Levine et al., 2016
o 14 robot arms learning to grasp in parallel
o objects started being picked up at around 20,000 grasps

https://spectrum.ieee.ora/automaton/robotics/
artificial-intelligence/gooqle-large-scale-roboti
c-grasping-project



https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/google-large-scale-robotic-grasping-project
https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/google-large-scale-robotic-grasping-project
https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/google-large-scale-robotic-grasping-project

Main Problem: Sample Inefficiency

Observing the behavior of the robot after over 800,000
grasp attempts, which is equivalent to about 3000 robot-
hours of practice, we can see the beginnings of intelligent
reactive behaviors.

https://www.youtube.com/watch?v=cXaic k80uM



https://www.youtube.com/watch?v=cXaic_k80uM
http://www.youtube.com/watch?v=cXaic_k80uM

Main Problem: Sample Inefficiency

e Solution?

e Off-Policy Learning!



Background: On-Policy vs. Off-Policy

e On-policy learning: use the deterministic outcomes or samples from the target
policy to train the algorithm
o has low sample efficiency (TRPO, PPO, A3C)
o require new samples to be collected for nearly every update to the policy
o becomes extremely expensive when the task is complex

e Off-policy methods: training on a distribution of transitions or episodes
produced by a different behavior policy rather than that produced by the target
policy

o Does not require full trajectories and can reuse any past episodes
(experience replay) for much better sample efficiency
o relatively straightforward for Q-learning based methods



Background: Bellman Equation

e \alue Function: How good is a state?

V(s) = E[G,|S; = 5]
= E[Ri1 + YRi2 + }’2Rt+3 + ... |8 = 5]
= E[Ri+1 + y(R2 + yRi3 + ..)|S: = 5]
= E[Ri+1 + 7Gr41|S: = 5]
= E[Ri1 + yV(SeIS: = 5]

temporal difference target

e Similarly, for Q-Function: How good is a state-action pair?

0(s,a) = E[Rip1 +yV(St41) | St = 5,A; = a]
= E[Ri1 + yEaz O(St41, a) | S = 5,A; = a]



Background: Value-Based Method

[ coe g St,At, Rt+17 St+1’At+1’ ceee (On'p0||cy)
Q(S1, Ar) « O(S1, Ap) + a(Rep1 +7Q(Sr415 A1) — Q(S1, Ar))

e Q-Learning (off-policy)
O(S1,Ar) < OS5, Ar) + a(Ri1 + y maxgeq O(Ssv1,a) — O(Ss,Ar))

e DAQN, Minh et al., 2015
- 2
L(O) = Egarsrvw | (r+7max 0, a'67) - 06s.3; 0))|

e Function Approximation

e Experience Replay: samples randomly drawn from
replay memory

e Doesn’t scale to continuous action space



Background: Policy-Based Method (Actor-Critic)

e Critic: updates value function parameters w and depending on the algorithm it could be
action-value Q(als; w) or state-value V(s; w).
e Actor: updates policy parameters 6, in the direction suggested by the critic, z(als; ).

VJ@O) = E,, [V Inn(als, 0)0,(s,a)] policy gradient

0 < 0+ apQ(s,a; w)Vyg In n(a|s; @)  update actor
Gr1 =1 +y0(s’,d’ ; w) — O(s, a; w)  correction for action-value

w < W+ @y Gri1 V,Q(s, a; w).  update criti

https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html#actor-critic



https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html#actor-critic

Prior Work: DDPG

Action
e DDPG =DQN + DPG (Lillicrap et al., 2015) !
o off-policy actor-critic method that learns a deterministic {@}Noise
policy in continuous domain
o exploration noise added to the deterministic policy when
select action
o difficult to stabilize and brittle to hyperparameters
(Duan et al., 2016, Henderson et al., 2017)
o unscalable to complex tasks with high dimensions
(Gu et al., 2017)
Input

https://www.youtube.com/watch?v=zR11FLZ-O9M&t=2145s



https://www.youtube.com/watch?v=zR11FLZ-O9M&t=2145s
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Main Problems: Robustness

e Training is sensitive to randomness in the environment, initialization of the
policy and the algorithm implementation

https://gym.openai.com/envs/\Walker2d-v2/



https://gym.openai.com/envs/Walker2d-v2/

Main Problems: Robustness

e Knowing only one way to act makes agents vulnerable to environmental
changes that are common in the real-world

https://bair.berkeley.edu/blog/2017/10/06/soft-g-learning/



https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Background: Control as Inference
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Traditional Graph of MDP Graphical Model with Optimality Variables



Background: Control as Inference

Normal trajectory distribution

7
p(7) = p(s1,ay,...,sp,ar|d) = p(s1) Hl’(at|sf~9)1'(st+l|st~ ay).
t=1
Posterior trajectory distribution p(Op = 1|ss, a,) = exp(r(se, ar)).
=
p(T|o1.7) x p(7,01.7) = p(s1) HP(O' = 1|s¢, a¢)p(Se+1/8t, ar)
t=1

T

= p(s1) I | exp(r(se, ar))p(se+1/se, ar)
t
-

=1
i

= |p(s1) H[}(s,+1|s,,a,)] exp <Z r(s,,a,)) ;
t=1

=1



Background: Control as Inference

Variational Inference

Dx1L(p(7)|lp(7)) = —Ernp(r)[logp(r) — log p(7)].
4
—Dx(p(7)|Ip(7)) = Ernp(r) [1081) S1 +Z log p(St+1(st,ar) +7(st,ar)) —
t=1
-
logp(s1) — Y _ (log p(si1]st, ar) + log m(ar|s:))
t=1

1
T~p (7) [Z {f lOg 7T(af |Sf ):|

t=1
T

= Z E(s,.a,)~p(s,.a,))[7'(Sts a;) — log m(a|s;)]
t=1
T

= E(s, a)~i(s1,a0) [T, 80)] + Eg s, [H(m(ar]se))]-

t=1



Background: Max Entropy RL

Conventional RL Objective - Expected Reward

Zt E(St,at)NPn [T(St7 at)]

Maximum Entropy RL Objective - Expected Reward + Entropy of Policy

D Esiaimp, [r(sea0) + afi(m(-[s,)
t

Entropy of a RV x

H(P)= E [~log P(x)



Max Entropy RL

e MaxEnt RL agent can capture different modes of optimality to improve
robustness against environmental changes

Q(s¢.a¢)

\ a,|s,] X(“\])Q(Sf a;)

https://bair.berkeley.edu/blog/2017/10/06/soft-g-learning/



https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Max Entropy RL

‘ - m(als) = N(u(sy), X)

mgn Dk r[m(-[s0)|lexp(Q(s0,-))]

b fe
| Q(se,ay)
A
/\ a, = min Fr[log ™ (ao|so) ]
\/J "

exp(Q(so, ao))

= max Er[Q(s0,a0) — logm(ap|so)]

Q) = max Ex[) (s, ar) + H(m(-[s0))|s0]
| t

m(as(s:) x exp Q(ss, as)

D = JntazEnt(m(-]50))
———




Prior Work: Soft Q-Learning

e Soft Q-Learning (Haarnoja et al., 2017)
off-policy algorithms under MaxEnt RL objective
Learns Q* directly
sample policy from exp(Q*) is intractable for continuous actions
use approximate inference methods to sample
m Stein variational gradient descent
o not true actor-critic

®)
©)
©)
O

O(S1,Ar) < O(S1,Ar) + a(Ri1 + y maxgeq O(Si41,a) — O(S1,Ar))

Qsoft (St7 at) ey ESH_leS [Vsoft (St+1)] , VS¢,ay

1
Vsoftt (St) +—alog / exXp (a Qsoft (St7 a’)) da’, Vs,
A



SAC: Contributions

e One of the most efficient model-free algorithms

o SOTA off-policy

o well suited for real world robotics learning
e Can learn stochastic policy on continuous action domain
e Robust to noise

e Ingredients:
o Actor-critic architecture with seperate policy and value function networks
o Off-policy formulation to reuse of previously collected data for efficiency
o Entropy-constrained objective to encourage stability and exploration



Soft Policy lteration: Policy Evaluation

e policy evaluation: compute value of T according to Max Entropy RL Objective

e modified Bellman backup operator T:
TTFQ(Sta at) = T(Stv at) a5 ’VESL+1NP {V(St-i—l)}]

V(st) = Ea,~r [Q(st, ) —[a log w(at]st)J]

e Lemma 1: Contraction Mapping for Soft Bellman Updates

Q k+1 — TW Q k converges to the soft Q-function of TT



Soft Policy Iteration: Policy Improvement

e policy improvement: update policy towards the exponential of the new soft
Q-function

e modified Bellman backup operator T:
o choose tractable family of distributions big Il
o choose KL divergence to project the improved policy into big I1

r(ay[se) = N(u(se), %)
1 Hmola i v i
p QQ ty y V) e
A ¥ w(ads:) x expQ(se.ar)
7/ Told (St) y W e

Mnew = arg min Dicp (W’(- |st)

e Lemma?2

anew (St7 at) 2 QWOld (St7 at) for any state action pair



Soft Policy Iteration

e soft policy iteration: soft policy evaluation <-> soft policy improvement

e Theorem 1: Repeated application of soft policy evaluation and soft policy
improvement from any policy = € II converges to the optimal MaxEnt policy
among all policies in I1

o exact form applicable only in discrete case

o need function approximation to represent Q-values in continuous
domains

o -> Soft Actor-Critic (SAC)!



SAC

Qo(st, at)

Ty (at|se)

Jo(0)  VeJq(0)

JTI’((b) vcﬁJW(qb)

parameterized soft Q-function
e e.g.neural network

parameterized tractable policy
e e.g. Gaussian with mean and covariances
given by neural networks

soft Q-function objective and its stochastic
gradient wrt its parameters

policy objective and stochastic gradient wrt its
parameters



SAC: Objectives and Optimization

e Critic - Soft Q-function
© minimize square error

o @ exponential moving average of soft Q-function weights to stabilize
training (DQN)

1

Jo(0) = Es,,a,)~D 2 (Qo(st,as) = (r(st;ar) + YEs,yynp [Vé(st+l)]))2

V(st) = Ea,nr [Q(st,ar) — alog m(agsy)]

Vodqg(0) = VoQo(ar,st) (Qo(st, ar) — (r(se, ar) + v (Qp(St+1,at41) — alog (mg(ar+1]si+1))))



SAC: Objectives and Optimization

EH ZW()l(l (Sf)

exp (3™ (s, -)) )

e Actor-Policy Thew = arg min Dy, (W’( |st)
™

e multiply by alpha and ignoring the normalization Z

Jr(¢) = Eg,np [Ea,~m, [olog (mg(ag]se)) — Qo(se, st)]]

e reparameterize with neural network f a; = fy (€5 8¢)
o epsilon: input noise vector, sampled from a fixed distribution (spherical Gaussian)

J7r(¢) = EStN’D,eth [0/ log 7Tqb(f¢(€t; St)|st) - QQ(St, fd)(ﬁt; St))]
Vo Jr(9) = Voalog (mg(arlst)) + (Va,alog (mg(arlst)) — Va,Q(st, 1))V f(€r; 51)

e Unbiased gradient estimator that extends DDPG stype policy gradients to any tractable stochastic
policy



SAC: Algorithm

Algorithm 1 Soft Actor-Critic Note

Initialize parameter vectors 1, ¥, 6, ¢. e Original paper learns V to
for each iteration do stabilize training
for each environment step do
ay ~ Ty(ay|se)
St+1 ~ P(Set1]se, ar)
D < DU {(st,as,r(s¢,a¢),S¢+1)}
end for
for each gradient step do
¥ =P = AvVydv(¥)
01' < 9,; ot AQﬁgiJQ(ei) fori € {1,2}
(é « ¢ - ’\ﬂ'vcb']ﬂ(?)
YT+ (1-7)¢
end for
end for

e Butin the second paper, V is
not learned (reasons unclear)




Experimental Results

e Tasks
o Arange of continuous control tasks from the OpenAl gym benchmark
suite
o RL-Lab implementation of the Humanoid task
o The easier tasks can be solved by a wide range of different algorithms,
the more complex benchmarks, such as the 21-dimensional Humanoid

(rllab) are exceptionally difficult to solve with off-policy algorithms.
e Baselines:

o DDPG, SQL, PPO, TD3 (concurrent)
o TD3 is an extension to DDPG that first applied the double Q-learning
trick to continuous control along with other improvements.

https://arxiv.org/abs/1801.01290



https://arxiv.org/abs/1801.01290

SAC: Results
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Experimental Results: Ablation Study

How does the stochasticity
of the policy and entropy
maximization affect the
performance?

Comparison with a
deterministic variant of SAC
that does not maximize the
entropy and that closely
resembles DDPG

Humanoid (rllab)

stochastic policy

600 inistic poli
000 deterministic policy

4000

average return

2000

0 2 B 6 8 10
million steps

https://arxiv.org/abs/1801.01290
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average return

Experimental Results: Hyperparameter Sensitivity
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https://arxiv.org/abs/1801.01290



https://arxiv.org/abs/1801.01290

Limitation

e Unfortunately, SAC also suffers from brittleness to the alpha temperature
hyperparameter that controls exploration
o ->automatic temperature tuning!



Soft Actor-Critic
Algorithms and Applications

Thomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker,
Sehoon Ha, Jie Tan, Tikash Kumar, Henry Zhu, Abhishek Gupta,
Pieter Abbeel, Sergey Levine



Contributions

e Adaptive temperature coefficient
temperature

| o
S Es,a0)mon [7(50,a0) + aH(m( - [s¢))]

e Extend to real-world tasks such as locomotion for a quadrupedal robot and
robotic manipulation with a dexterous hand

https://arxiv.org/abs/1801.01290



https://arxiv.org/abs/1801.01290

Real World Robots

https://arxiv.org/abs/1801.01290



https://arxiv.org/abs/1801.01290
http://www.youtube.com/watch?v=FmMPHL3TcrE
http://www.youtube.com/watch?v=KOObeIjzXTY

Real World Robots

e Dexterous Hand Manipulations
e 20 hour end-to-end learning
e valve position as input: SAC 3 hours vs. PPO 7.4 hours

https://sites.gooqgle.com/view/sac-and-applications



http://www.youtube.com/watch?v=f25vEN69fZA
https://sites.google.com/view/sac-and-applications

Automatic Temperature Tuning

e Choosing the optimal temperature is non-trivial (tuned for each task)
e Constrained optimization problem:

max Yy Es, a)mp, [1(80,80) + aH(7(-[s))]
t

T
maxE,_ [Z r(st,at)] s.t. B, .a)~p, |— log(m(as|st))] > H Vi

To:T
t=0

https://arxiv.org/abs/1801.01290
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Dual Problem for the Constrained Optimization

Unroll the expectation

max (IE [r(s0,a0)] + max <IE ...] {maxE [r(s7,ar)] )

0 mr

For the last time step in the trajectory

max E, a,)~p, [7(ST,ar)] = min maxE [r(sy,ar) — arlogn(ar|sr)] — arH.
T (1’1'2() n

argmin Eg, a,~xr [—arlog mp(ar|sr;ar) — arH].

Y rIv



Dual Problem for the Constrained Optimization
Similarly, for the previous time step

max (IE [r(sT—1,ar—1)] + max E [r(sr, aT)]) (16)
e

TTr—1

= max (Q:}_l(ST—laaT—l) - ”TH)

T -1

= min max <IE [Qi}_l(sfr_l,arp_l)] — E [ar—-1logm(ar—1|sT-1)] — (,T_IH) + oM.

ar_1207Tr—1

* . - * )  /
a; = argmin Ea,~m [—at log 7/ (a¢|se; o) — a{H]
Xt



Algorithm 1 Soft Actor-Critic

Input: 604, 05, ¢ two soft Q-functions
91 — 91, (92 — 92
D+ 0
for each iteration do
for each environment step do
as ~ mp(ar[st)
St4+1 ™~ p(St+1!St, at)
D+ DU {(St, s, T(St, at), St_|_1)}
end for
for each gradient step do
0; « 0; — AoV, Jo(6;) fori € {1,2}
Qb L ¢ o )\WAV¢JW(¢)
a+— a— AV, J(a)
0; +— 70, + (1 —7')(91 for: € {1,2}
end for exponential moving average

end for
Output: (91, (92, gb

> Initial parameters
> Initialize target network weights
> Initialize an empty replay pool

> Sample action from the policy
> Sample transition from the environment
> Store the transition in the replay pool

> Update the Q-function parameters
> Update policy weights

> Adjust temperature

> Update target network weights

> Optimized parameters




Experimental Results:

RL Lab

Hopper-v2 Walker2d-v2 HalfCheetah-v2
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Figure 1: Training curves on continuous control benchmarks. Soft actor-critic (blue and yellow) performs
consistently across all tasks and outperforming both on-policy and off-policy methods in the most challenging
tasks.

https://arxiv.org/abs/1801.01290



https://arxiv.org/abs/1801.01290

Experimental Results: Robustness



https://docs.google.com/file/d/16w9JrC5ax3DmJRqv6OEyZUoaQumYT-z3/preview

Limitations/Open Issues

e Lack of experiments on hard-exploration problem



Limitations/Open Issues

e Lack of experiments on hard-exploration problem
e Approximating a multi-modal Boltzmann distribution with a unimodal Gaussian

(a8 N(u(s,), X)
A A
o
Q(s:.a;) Q(s:. a)
/‘\ \ /‘ \
y \ ¥ Yo \ ¥ wl(ags:) x exp (s, as)
/ | \ / \
‘ \ L [/ N
\ / N\ o \
a; M \ lv"’ 3 S\ as
> ! ' ~ >



Limitations/Open Issues

e Lack of experiments on hard-exploration problem
e Approximating a multi-modal Boltzmann distribution with a unimodal Gaussian
e High-variance using automatic temperature tuning



Limitations/Open Issues

e Lack of experiments on hard-exploration problem
e Approximating a multi-modal Boltzmann distribution with a unimodal Gaussian
e High-variance using automatic temperature tuning
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Recap: SAC

e An off-policy maximum entropy deep reinforcement learning algorithm
o Sample-efficient
o Scale to high-dimensional observation/action space
o Robustness to random seed, noise and etc.
e Theoretical Results
o Convergence of soft policy iteration
o Derivation of soft-actor critic algorithm
e Empirical Results
o SAC outperforms SOTA model-free deep RL methods, including DDPG,
PPO and Soft Q-learning, in terms of the policy’s optimality, sample
complexity and robustness.



Questions to test your understanding

e \What is the objective in maximum entropy reinforcement learning?

e \Why are off-policy methods more sample-efficient compared to on-policy
methods?

e \Why do we want the policy to be close to the exponential transformation of
Q-value?

e What is soft policy iteration?



Any Questions?
Thank you!



Background: Q-Learning

e Q-Learning: use any behavioral policy to estimate the optimal Q* function that
maximizes the future reward
o Directly approximate Q* with Bellman Optimality Equation
o Independent of policy being followed

Qer1(st, at) = Qt(st, at)+a (Rt+1 +ymax Qe(st11,a) — Qelst, at))

ﬁ Old state

https://www.youtube.com/watch?v=zR11FLZ-O9M



https://www.youtube.com/watch?v=zR11FLZ-O9M

Max Entropy RL

Entropy H(P) = EP |— log P(x)]

e Entropy-regularized Reinforcement Learning

n* = argmax E [Z% st,at,stﬂ)+aH(7T(-|st))>:|

T~
t=0

State Value Function & Value Function Q
s !Z g (R(Sta ap, sp41) + (W('|St)))

(s,a) ol [Z Y R(s4, az, 8¢11) + OZZW’tH (m(-]s¢))

So = 8] V7(s) = E [Q7(s,a)] +aH (n(]3))

SoZS,a,O:a]

https://spinningup.openai.com/en/latest/algorithms/sac.html



https://spinningup.openai.com/en/latest/algorithms/sac.html

Real World Robots

e Need the ability to generalize to unseen environment and robustness against
noisy real-world environment

e Robots get damaged in the physical world
o requires sample-efficient learning

e Examples
o Quadrupedal Locomotion in the Real World (2 hours
of training)
o Dexterous Hand Manipulations (20 hours
end-to-end learning)



Real World Robots

e Minitaur robot (Kenneally et al., 2016)

"first example of a DRL algorithm learning underactuated quadrupedal
locomotion directly in the real world without any simulation or pretraining"

https://sites.gooqgle.com/view/sac-and-applications



http://www.youtube.com/watch?v=FmMPHL3TcrE
http://www.youtube.com/watch?v=KOObeIjzXTY
https://sites.google.com/view/sac-and-applications

Real World Robots

e Dexterous Hand Manipulations
e 20 hour end-to-end learning
e valve position as input: SAC 3 hours vs. PPO 7.4 hours

https://sites.gooqgle.com/view/sac-and-applications



http://www.youtube.com/watch?v=f25vEN69fZA
https://sites.google.com/view/sac-and-applications

Main Problem - Sample Inefficiency

e Sample inefficient algorithms can be problematic when deployed in the real
world
o damage to robots/humans

1. Improve
Transfer
Learning

2. Improve
~ Simulation




Main Problems

widespread adoption of model-free DRL is hampered by:

e expensive in terms of sample complexity
o simple tasks require millions of steps of data collection
o high-dimensional observations/action space require substantially more

e brittle with respect to hyperparameters
o |earning rates, exploration constants
o set carefully to achieve good results



Soft actor-critic

1. Q-function update
Update Q-function to evaluate current policy:

Q(s, a) +—r(s,a)+ Es'~p,, a’~n [Q(S’a a,)— log7r(a'|s')]

This converges to Q™

2. Update policy
Update the policy with gradient of information projection:

% exp Q‘"o‘d (S’ : ))

In practice, only take one gradient step on this objective

Tnew — arg n;lri,nDKL (7(,( : |S)

3. Interact with the world, collect more data

Haarnoja, Zhou, Abbeel, L., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning. 2018



