
Rainbow - Combining Improvements in
Deep Reinforcement Learning

IMPALA: Scalable Distributed Deep-RL
with Importance Weighted Actor-

Learner Architectures

Mohan Zhang

Problem settings

• The Markov Decision Process <𝑆, 𝐴, 𝑇, 𝑟, 𝛾>

• S states

• A actions

• 𝑇 𝑠, 𝑎, 𝑠′ = 𝑃[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (stochastic) transaction func

• 𝑟 𝑠, 𝑎 = 𝔼[𝑅𝑡+1|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎] reward

• 𝛾𝑡 discount factor at time t

• Discounted return 𝐺𝑡 = σ𝑘=0
∞ 𝛾𝑡

(𝑘)
𝑅𝑡+𝑘+1

• Discount factor 𝛾𝑡
(𝑘)

= ς𝑖=1
𝑘 𝛾𝑡+𝑖

Tons of tricks in a nutshell! Ready?

Value-based RL

• vπ(s)= 𝔼[𝐺𝑡|𝑆𝑡 = 𝑠] or 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• Then, with the value (or Q value) as a proxy, we could derive the
policy 𝜋 with 𝜖-greedy argmax. (take max value action with
probability 1- 𝜖 or uniformly from action space A with probability 𝜖)

DQN

• A deep Q network (DQN) is a multi-layered neural network that for a
given state s outputs a vector of action values Q(s, · ; 𝜃), where 𝜃 are
the parameters of the network.

• target network: its parameters (𝜃−) are copied every episode from
the online network (𝜃) to make training more stable.

• reply buffers (Experience reply): transitions, rewards and actions are
stored for some time and sampled uniformly from this memory bank
to update the network. This is to prevent our DNN to overfit the
current episode

Double Q-Learning

• Two separate value functions (DNNs in our case)

• Pick a batch of experience, then assign each experience randomly to
one of the DNN to update it. After this, we get two set of params 𝜃
and 𝜃′

• For each update, one set of DNN is used to determine the action
greedily, the other is used to determine the Q value.

From Double Q-Learning to Prioritized Replay

• For SGD, we used this to measure the temporal-difference (TD) error:

• Δ = 𝑅𝑡+1 + 𝛾𝑡+1𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄𝜃− 𝑆𝑡+1 , 𝑎′ − 𝑄𝜃 𝑆𝑡 , 𝐴𝑡
• We perform gradient descent over 𝜃, then update 𝜃− in the

beginning of every episode.

Backup vanilla Q-Learning

• 𝜋: policy

• 𝛾: discount factor

• R: reward

• S: state

• A: action

• Then, the optimal Q value

≡ 𝔼 [𝑅1 + 𝛾𝑄𝜋 𝑠𝑡+1 , 𝑎
′]

Backup vanilla Q-Learning

• The optimal Q value can be learned from Q Learning

• In most cases, we cannot go over all action values in all states
separately. So, we parametrize the Q value by 𝜃: 𝑄 𝑠, 𝑎; 𝜃𝑡 , which
can be updated with SGD:

•

•

• 𝑌𝑡
𝑄

represents the optimal Q value given best choice of 𝜃

• 𝛼 is the learning rate

Prioritized Replay

• DQN samples uniformly from the replay buffer.

• we sample import (with high expected learning progress) transactions
more frequently.

• Sample probability given the (traditional) experience <𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1>

• ω is a hyper-parameter that determines the shape of the distribution.

• Note that stochastic transitions might also be favored, even when
there is little left to learn about them, in order to avoid overfitting.

Dueling Networks

• Basically, add another network to evaluate action advantages.

• We evaluate “goodness” (on the edge or not) of a state s and advantage of
choosing an action a (turn left or right).

• 𝑣𝜂: value of state. 𝜂 is the params of such value stream.

• 𝑎𝜓: value of action advantage. 𝜓 is the params of such

advantage stream.

• 𝑓𝜉 is the shared convolutional encoder (network)

Multi-step Learning

• truncated n-step return from a given state 𝑆𝑡:

• Then, the multi-step variant of DQN is then defined by minimizing the

alternative loss (same thing as before, just changed 𝑅𝑡 to be 𝑅𝑡
(𝑛)

• Multi-step targets with suitably tuned n often lead to faster learning

Distributional RL
• learn to approximate the distribution of returns instead

of the expected return.

• Maximize over the expected sum of future rewards.

• New Bellman: 𝑉𝜋 𝑥 ≡ 𝔼𝑃𝜋 σ𝑡 𝛾
𝑡𝑅 𝑥𝑡 |𝑥0 = 𝑥 = 𝔼𝑅 𝑥 + 𝔼𝑥′~𝑃𝜋𝑉

𝜋 𝑥′

• Future expectation makes modeling even more complex! We use a hidden
variable z to model the value distribution:

• 𝑉𝜋 𝑥 = 𝔼𝑍𝜋 𝑥 = 𝔼 𝑅 𝑥 + 𝛾𝑍𝜋 𝑥′ , where 𝑥′~P𝜋(∙ |𝑥)

• Discrete distributions C51 to measure. Simply replace the Q-output in DQN to
a softmax over 51 probabilities.(more bins, better performance!)

Distributional RL
• The equations for a distributional

variance of Q-learning: constructing a
new support 𝑑𝑡 by minimizing the KL
divergence between 𝑑𝑡 and target 𝑑𝑡 ’.

Noisy Nets

• where many actions must be executed to collect the first reward
(Montezuma’s Revenge), what do we do?

• Add noise for better exploration!

• Over time, the network can learn to
ignore the noisy stream at different rates
in different parts of the state space

• self-annealing

Now, group together!

Recap

Target
net

Dueling network

Prioritized reply

Final target KL to minimize

Multi-step Learning Distributional RL

Double DQN

Experiments:

• “All Rainbow’s components have a number of hyper-parameters. The
combinatorial space of hyper-parameters is too large for an
exhaustive search, therefore we have performed limited tuning.”

Experiments:

• Double DQN is redundant?

• Is it just useless or the
functionality is shadowed by
the combination of other
tricks?

• Pros:

All tricks together, SOTA performance!

A good base to construct your other algorithms on

• Cons:

Hard to tune, hard to implement

No clue how to make it more efficient

IMPALA:
Scalable Distributed Deep-RL with Importance

Weighted Actor-Learner Architectures

IMPALA

V trace correction

if 𝝁>𝝅

My Questions:

• Where were they from?

• What is the most important contribution of IMPALA?

(hint: distributed)

