# CSC2621 Topics in Robotics Reinforcement Learning in Robotics

Week 6: Distributional RL

**Animesh Garg** 

A distributional code for value in dopamine based reinforcement learning

Dabney et al. Nature 2020

**Topic: Distributional RL Presenter:** Animesh Garg

#### Article

## A distributional code for value in dopaminebased reinforcement learning

https://doi.org/10.1038/s41586-019-1924-6

Received: 3 January 2019

Accepted: 19 November 2019

Published online: 15 January 2020

Will Dabney<sup>1,5</sup>\*, Zeb Kurth-Nelson<sup>1,2,5</sup>, Naoshige Uchida<sup>3</sup>, Clara Kwon Starkweather<sup>3</sup>, Demis Hassabis<sup>1</sup>, Rémi Munos<sup>1</sup> & Matthew Botvinick<sup>1,4,5</sup>

Since its introduction, the reward prediction error theory of dopamine has explained a wealth of empirical phenomena, providing a unifying framework for understanding the representation of reward and value in the brain<sup>1-3</sup>. According to the now canonical theory, reward predictions are represented as a single scalar quantity, which supports learning about the expectation, or mean, of stochastic outcomes. Here we propose an account of dopamine-based reinforcement learning inspired by recent artificial intelligence research on distributional reinforcement learning<sup>4-6</sup>. We hypothesized that the brain represents possible future rewards not as a single mean, but instead as a probability distribution, effectively representing multiple future outcomes simultaneously and in parallel. This idea implies a set of empirical predictions, which we tested using single-unit recordings from mouse ventral tegmental area. Our findings provide strong evidence for a neural realization of distributional reinforcement learning.

### Motivation

#### Rewards are not Scalar

"According to the now canonical theory, reward predictions are represented as a single scalar quantity, which supports learning about the expectation, or mean, of stochastic outcomes..."

#### Multiplicity of Future Outcomes

"We hypothesized that the brain represents possible future rewards not as a single mean, but instead as a probability distribution, effectively representing multiple future outcomes simultaneously and in parallel...."

### Motivation



Distributional value coding arises from a diversity of relative scaling of positive and negative prediction errors

## Agenda

Q-Value (Continued)

 QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation Make distributed Q-learning (+variants) work for real applications

### **Distributional RL**

- A Comparative Analysis of Expected and Distributional Reinforcement Learning What is Distributional RL? Does any of this work at all? If yes, then when?
- Statistics and Samples in Distributional Reinforcement Learning How and when Categorical and Quantile regression is insufficient. Hence Expectiles!