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Why Distributional RL?
1. Why restrict ourselves to the mean of value distributions?

i.e. Approximate Expectation v/s Approximate Distribution



Why Distributional RL?
1. Why restrict ourselves to the mean of value distributions?

i.e. Approximate Expectation v/s Approximate Distribution

2. Approximation of multimodal returns?



Why Distributional RL?



Motivation
● Poor theoretical understanding of distributional RL framework

● Benefits have only been seen in Deep RL architectures and it is not known if 

simpler architectures have any advantage at all
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● Distributional RL different than Expected RL?
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Contributions
● Distributional RL different than Expected RL?

○ Tabular setting 
○ Tabular setting with categorical distribution approximator
○ Linear function approximation
○ Nonlinear function approximation

● Insights into nonlinear function approximators’ interaction with distributional 
RL 
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General Background– Visualization

denotes the scalar reward obtained for               transition



General Background: Randomness

Source of randomness                    –

 ●  Immediate rewards
 ●  Stochastic dynamics
 ●  Possibly stochastic policy



General Background– Contractions?

1. Is the policy evaluation step a contraction operation? 
Can I believe that during policy evaluation my distribution is converging to the 
true return distribution?

2. Is contraction guaranteed in the control case, when I want to improve the 
current policy?
Can I believe that the Bellman optimality operator will lead me to the optimal 
policy?



Policy Evaluation Contracts?

Is the policy evaluation step a contraction operation? 
Can I believe that during policy evaluation my distribution is converging to the true 
return distribution?

Formally– given a policy     do iterations                       converge to         ?



Contraction in Policy Evaluation?

So the result says Yes! You can rely on the distributional bellman updates for policy evaluation!

Given a policy     do iterations                       converge to         ?



Defined as,

where F-1 and G-1 are inverse CDF of F 
and G respectively

Maximal form of the Wasserstein,

Where                an  and Ƶ denotes the 
space of value distributions with 
bounded moments

Detour– Wasserstein Metric



Contraction in Policy Evaluation?

So the result says Yes! You can rely on the distributional bellman updates for policy evaluation!

Given a policy     do iterations                       converge to         ?



Contraction in Policy Evaluation?

Given a policy     do iterations                       converge to         ?

Thus,



Contraction in Control/Improvement ?
First give a small background using definitions 1 and 2 from DPRL

Write the equation in the policy iteration of the attached image.

<give equations>

Unfortunately this cannot be guaranteed...

GIve a similar equation for the policy evaluation also



General Background– Contractions?

1. Is the policy evaluation step a contraction operation? 
Can I believe that during policy evaluation my distribution is converging to the 
true return distribution?

2. Is contraction guaranteed in the control case, when I want to improve the 
current policy?
Can I believe that the Bellman optimality operator will lead me to the optimal 
policy?



Contraction in Policy Improvement?



Contraction in Policy Improvement?
x1          x2 transition
At x2 two actions are possible
r(a1 )=0, r(a2 ) = ε+1 or ε-1 with 0.5 probability

Assume a1 , a2 are terminal actions and the environment 
is undiscounted

What is the bellman update TZ(x2, a2) ?

Since the actions are terminal, the backed up distribution 
should equal the rewards

Thus TZ(x2, a2) = ε±1 (or 2 diracs at ε+1 and ε-1)
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Assume a1 , a2 are terminal actions and the environment 
is undiscounted

What is the bellman update TZ(x2, a2) ?

Since the actions are terminal, the backed up distribution 
should equal the rewards

Thus TZ(x2, a2) = ε±1 (or 2 diracs at ε+1 and ε-1)



Contraction in Policy Improvement?
Recall that if rewards are scalar, then bellman updates are older distributions Z 
just scaled and translated

Thus the original distribution Z(x2, a2) can be considered as a translated version 
of TZ(x2, a2)

Let Z(x2, a2) be -ε±1

The 1 Wasserstein distance between Z and Z* 
(assuming Z and Z* are same everywhere except x2, a2 )



Contraction in Policy Improvement?
When we apply T to Z, then greedy action a1 is selected, thus TZ(x1) = Z(x2,a1)

This shows that the undiscounted update is not a contraction.

Thus a contraction cannot be guaranteed in the control case.
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Contraction in Policy Improvement?
When we apply T to Z, then greedy action a1 is selected, thus TZ(x1) = Z(x2,a1)

This shows that the undiscounted update is not a contraction.

Thus a contraction cannot be guaranteed in the control case.

So is distributional RL a dead end?

Bellemare showed that if there is a total ordering on the set of optimal policies, 
and the state space is finite, then there exists an optimal distribution which is the 
fixed point of the bellman update in the control case.

And the policy improvement converges to this fixed point [4]



Contraction in Policy Improvement?
So is distributional RL a dead end?

Bellemare showed that if there is a total ordering on the set of optimal policies, and the state space is finite, then there 
exists an optimal distribution which is the fixed point of the bellman update in the control case

Here Z** is the set of value distributions 
corresponding to the set of optimal policies.
This is a set of non stationary optimal value
distributions



The C51 Algorithm
Could have minimized Wasserstein metric between TZ and Z and hence learn an 
algorithm. 

But learning cannot be done with samples in this case.

The expected sample Wasserstein distance between 2 distributions is always 
greater than the true Wasserstein distance between the 2 distributions.

So how do you develop an algorithm?

Instead project it on some finite supports, (which implicitly minimizes the Cramer 
distance between the original distribution thus still approximating the original 
distribution while keeping the expectation the same.)

Project what? Project the updates TZ.

So now we can see the entire algorithm!



The C51 Algorithm

This is same as a Cramer Projection 
which we’ll see in the next slide



C51 Visually

z1   z2    z3…... zK

δzi

Update each dirac as 
per the distributional 
bellman operator

The distribute the mass 
of misaligned diracs on 
the supports

https://en.wiktionary.org/wiki/%CE%B4#Ancient_Greek


Cramèr Distance
● Gradient for the sample Wasserstein distance is biased 

● For 2 given probability distributions with CDFs, FP and FQ , the cramer metric 
is defined as 

For biased wasserstein gradient refer to section 3 of Reference [1]



Cramèr Distance
● Attractive metric for distributional manipulations

1. The policy evaluation bellman operator is a contraction in Cramer 
distance as well as shown by Rowland et. al. 2018

2. A Cramer projection produces a distribution supported on z which 
minimizes the Cramer distance to the original distribution

If the support is contained in the interval [z1, zK] then it’s trivial to show that Cramer 
projection preserves the distribution expected value



Cramèr Distance
Now as we saw earlier, in distributional RL we need to approximate distributions

One way to do this is to formulate them as a categorical distribution like C51 did

Then the cramer distance is given as,

This is same as a weighted Euclidean norm between the CDFs of the 2 distributions. 

When the atoms of the support are equally spaced apart, we get a scalar multiple of the Euclidean distance between the vectors of the CDFs
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Methods
● Compare policy evaluation in expected RL vs dist RL in several settings       

(ie tabular, linear approx, non linear approx) 
● For each setting, the goal is to show expectation equivalence of expected 

version vs an analogous distributional version. Expectation equivalence:

● Want to show: 
● Use same experience in both 



Methods: Sequence of Proofs
1. Tabular Models: Represent distribution over returns at each (s,a) separately

a. Contains Model: (Have full knowledge of the transition model and policy)
i. No constraint on type of distribution to model returns
ii. Constrain return distributions to being categorical on fixed support 

b. Sample Based: (SARSA based updates, i.e. only using samples)
i. No constraint on type of distribution to model returns
ii. Constrain return distributions to being categorical on fixed support
iii. Semi gradient w.r.t CDF update for distributional compared to SARSA
iv. Semi gradient w.r.t PDF update for distributional compared to SARSA 

(doesn’t hold)
2. Linear Approximations:

a. Semi gradient of Cramer distance w.r.t CDF 
3. Non linear Approximation: 

a. There exists a non linear representation of the CDF such that initially we have 
equivalence but lose it after the first weight update.
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Proposition 1: Cramer Projection

● If we have a categorical distribution which has support lying between    then 
where , then Cramer project it onto the support z, then 
the expectation will remain. 

                              

   



Proposition 2: Tabular, Model-Based
Z(s,a) and Q(s,a) defined separately for each (s,a)
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Proof Proposition 2



Tabular, Contains Model, Categorical Distributions
Suppose Z has finite support  kdjfhjk then applying:

can cause the resulting distribution to require a projection back to the support.

Proposition 3: 
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SARSA vs Distributional SARSA (Arbitrary Distribution)

Given transition:  

Proposition 4: These two policy evaluation methods have expectation equivalence.



Proof: SARSA vs Distributional SARSA

Expand P_(Z_(t+1))

Notice 
similarities 
between exp 
SARSA and 
dist SARSA
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SARSA vs Distributional SARSA (with Categorical Dist)

  Recall:

Difference:
Project onto support



Proof: SARSA vs Distributional SARSA (Categorical)

Need to Cramer 
project this variable
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SARSA vs Semi-gradient of Cramer Distance: 

Assume approximating distribution with categorical (c-spaced support). Gradient 
of squared Cramer w.r.t CDF:

Goal Proposition 6: Showing there is a semi gradient update which maintains 
expectation equivalence to SARSA (with a slight change in step size). 

Results: Semi-gradient w.r.t CDF => Expectation Equivalence

 Semi-gradient w.r.t PDF => Expectation Equivalence
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Linear Function Approximation

Loss Functions

Update Rule



Theta update from last 
slide

Takeaway: If  1. Distributions add to 1
    2. Distance between bins in distribution is 1

         Then:
Expectation equivalence holds

Under the assumption that the distributions add to one, and 
distance between bins in distribution is one, we obtain 
expectation equivalence
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Nonlinear Function Approximation
Created example to show expectation equivalence doesn’t 
always hold:
Let: 

1. Start with expectation equivalence
2. Fix a transition such that the target and prediction have 

the same expectation but different distributions.
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Nonlinear Function Approximation
Created example to show expectation equivalence doesn’t 
always hold:
Let: 

1. Start with expectation equivalence
2. Fix a transition such that the target and prediction have 

the same expectation but different distributions.
3. Now show that when we take a gradient step (using 

gradient of Cramer), the expectation of the predicted 
distribution changes  but the Q-value didn’t change 
expectation equivalence is broken.



Nonlinear Function Approximation
Takeaways: 
● This doesn’t prove that for all nonlinear functions that this happens.
● Gradient is taken w.r.t Cramer distance which isn’t the case in many 

successful algorithms (Quantile Distributional RL for ex. minimizes 
Wasserstein). 

● Expectation equivalence never breaks in the linear case which might mean 
that the benefits of distributional RL seen in practice could have to do with it’s 
interplay with nonlinear function approximation.



Recap: Sequence of Proofs
1. Tabular Models: Represent distribution over returns at each (s,a) separately

a. Model Based: (Have full knowledge of the transition model and policy)
i. No constraint on type of distribution to model returns
ii.  Constrain return distributions to being categorical on fixed support 

b. Sample Based: (SARSA based updates, ie only using samples)
i. No constraint on type of distribution to model returns
ii. Constrain return distributions to being categorical on fixed support
iii. Semi gradient w.r.t CDF update for distributional compared to SARSA
iv. Semi gradient w.r.t PDF update for distributional compared to SARSA (doesn’t hold)

2. Linear Approximations:
a. Semi gradient of Cramer distance w.r.t CDF 

3. Non linear Approximation: 
a. There exists a non linear representation of the CDF such that initially we have equivalence but 

lose it after the first weight update.



Takeaways
1. In cases where they proved expectation equivalence, there isn’t anything to 

gain from dist RL in terms of expected return. For ex:
a. Variance of our expected return is same in expected RL and distributional RL since 

Var[E(Z)]=Var[Q]
b. If using greedy methods, then policy improvement steps will be equivalent since 

expected value is same for each action. 
2. Distributional RL and expected RL are usually expectation-equivalent for 

tabular representations and linear function approximation.
3. Expectation equivalence doesn’t always hold when using non linear function 

approximation.



Experimental Results: Tabular Case (12x12 Grid)
Compare: Q-learning, dist with CDF updates, dist with PDF updates. Using same 
random seed, eps-greedy actions: (so end with same results if expectation equiv)
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Experimental Results: Linear Approximation

Cart Pole Acrobat



Experimental Results: Nonlinear Approximation

Cart Pole Acrobat
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Limitations
● Their results all hold for minimizing Cramer distance but possibly not other 

metrics that are used in some successful distributional RL algorithms 
(Wasserstein, cross-entropy)

● The algorithm they use through their proofs doesn’t seem to lead to quality 
results in practice

● Even though the authors prove that Cramer improves on Wasserstein 
limitations distributional RL [1], the empirical results don’t convey this



Open Questions
1. What happens in deep neural networks that benefits most from the 

distributional perspective? 
2. Is there a regularizing effect of modeling a distribution instead of expected 

value?



Questions
1. Derive:

2. What is one of the major benefits of the Cramer projection? 
3. What are some possible reasons for the performance improvement of 

distributional RL over expected value RL when using non linear function 
approximation? 
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