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Motivation: Imitation Learning from
Observations (ILFO)

Trajectories of
Observations

Learning From
Observations

No interactive expert, no expert action, no reset, no cost signals
Finite time horizon (T-step) Episodic MDP



Forward Adversarial Imitation Learning
(FAIL)

e

mo(alxo), my(alxy), - -, wr(alxr)



Decomposition into T subtasks

At time T, {m4, ..., mr_4} are learned already and fixed.
A state distribution v (x) is induced by {my, ..., m7_1}
Expert policy ™ naturally induces a distribution ur

We want to learn a policy my € Il such that the resulting observation
distribution from {4, ..., mr_1, wr} at time step T is close to the
expert’s observation distribution yr attime step T



Divergence: Integral Probability Metrics (IPM)

dg(Py, P) = Sup (Ex~p, [f ()] = Exp, [f ()])

F = {f: ||f||oo < 1}: Total Variation distance
F={f: ||f||L < 1}: Wasserstein distance

F={f: ||f||H < 1}: Maximum mean discrepancy



Learning the First Policy 1

Learner Distribution



Learning the Second Policy 14

Learner Distribution



Learning the Second Policy 14

U (X)
Expert Distribution min maXf(m) T f( F)

~1rp(x) = le,al‘”1§x1j my(aqlx) P(x|xq,a;)

Learner Distribution



Learning the Second Policy 14

~in (x)

Expert Distribution min max
__ 7T1€H fE:F N

Learner Distribution



Learning the Third Policy m,




Learning

Given the distribution v induced by {m, -, m;} € II, the observation
distribution attime step T + 1 as

vra@ = ) wrep)n(arlx)P el ar)
XT,AT-1
Expert distribution at time step T + 1 is denoted as p7, 4

1 is obtained via minimizing the divergence between v, and p4

mr = argmin max f(vryq1) — f(Ur41)
menn  JEF



Learning

However, the divergence max f(vryq1) — f(ur41) is not directly

measurable since we do not have access to .4 but only samples from

*
HT+1-



Learning

To estimate this divergence, we draw a dataset

D = {(xr,ar, X141))

such that xt~vp, alb~U(A), xb ~P( - |xk, ak)

/

. i N
Observations from expert D* = {x‘T+1}i_1~,u?+1



Learning

Empirical estimation of divergence:

N

NI
K . : 1 .
max(—z ﬂ(alT|XlT)f(XlT+1) — VE f(Xr41))

fEF

Where the importance weight Km(ab|x%) is used to account for the
fact that we draw actions uniformly from A but want to evaluate .



Learning

Now define the utility functlon of the two- pIayer game

u(r, f) = Nzn(aT\xT)f(xT+1 Zf(xm)

Then we have the two-player game with solution (7%, f™):

f* = argmaxu(m™, f)
feF

n* =argminu(m, )
mell



Algorithm 1 Min-Max Game (D*, D, 11, F,T)
I: Initialize 7° € 11

2: forn=1to 7 do

3:  f*" =argmaxseru(n”, f) (LP Oracle)

4z ™ =ala™, ™)

5: " = argmingen ., u(m, f*) + ¢(7) (Regu-
larized CS Oracle)

6: end for

7: Output: 7" with n* = arg min,, ¢ ) u"




Algorithm 2 FAIL({Hh}h, {fh}ha €, N, n’, T)

1: Setw =10

2: forh=1to H —1do

3:  Extractexpert’sdataat h + 1: D = {:Ez+1}?;1

D=1

for i = 1tondo
Reset 23 ~ p
Execute w = {m,...,Th_1} to generate state x*
Execute a"ﬁL ~ U(A) to generate zj,,, and add
(z}, ap, x;H—l) toD

end for

10:  Set 7, to be the return of Algorithm 1 with inputs

(25, T, T, Fces T)

11:  Append 7 to 7
12: end for

2 e




Assumption: (Realizability and Capacity of
Function Class)

Assume II and F are finite and contain it/ and f;, i.e.,

ni €Elland f;" € F,Vt € [0,T ]



Convergence Result

Theorem 3.1. Given ¢ € (0,1],6 € (0,1], set T =
S (462) N = N = 6 (KlOg(th!ﬂ“V&) Algo-
rithm 1 outputs 7 such that with probability at least 1 — 0,

d]:h-l—l (leha ,u;(L—H) il wI’IéilIIlh d]:h—l-l (ﬂ-,lyha ,u;(ri—l) 5 0(6)



Convergence Result

Given € € (0,1],6 € (0,1], algorithm 1 outputs  such that with
probability 1 — 9,

| {mfaxf(”fTﬂ) — furs1)} — {rr71Ti,n mfaxf(’lfTﬂ) — f(ur+1)}1<0(€)

(|Div(mr) — min Div(r’)| < O(¢))



Simulation:

T Dense/Sparse
Reward Task

Swimmer 100 Dense

Reacher 50 Dense/Sparse

FetchReach 50 Sparse



Simulation:

Compare FAIL with modified GAIL:

The modified version of GAIL uses RL methods to minimize the
divergence between the learner’s average state distribution and
expert’s average state distribution.
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Summary

* This paper point out a new direction of imitation learning research:
imitation learning from observation alone. (ILFO)

* Propose FAIL, an algorithm that is theoretically guaranteed to solve
the ILFO problem:s.

* Modify GAIL to solve ILFO problem, experimentally demonstrate that
GAIL and FAIL work equivalently well in problems with dense reward,
and FAIL outperforms GAIL on sparse reward MDPs.



