
Provably Efficient Imitation 
Learning from Observations
Wen Sun Anirudh Vemula Byron Boots J.Andrew Bagnell

Presented by: Zichu Liu



Motivation: Imitation Learning from 
Observations (ILFO)

No interactive expert, no expert action, no reset, no cost signals
Finite time horizon (T-step) Episodic MDP



Forward Adversarial Imitation Learning
(FAIL)



Decomposition into T subtasks

At time T, 𝜋1 , … , 𝜋𝑇−1 are learned already and fixed. 

A state distribution 𝓋𝑇 𝑥 is induced by 𝜋1 , … , 𝜋𝑇−1

Expert policy 𝜋∗ naturally induces a distribution 𝜇𝑇
∗

We want to learn a policy 𝜋𝑇 ∈ Π𝑇 such that the resulting observation 
distribution from {𝜋1 , … , 𝜋𝑇−1 , 𝜋𝑇} at time step T is close to the 
expert’s observation distribution 𝜇𝑇

∗ at time step T



Divergence: Integral Probability Metrics (IPM)

𝑑ℱ 𝑃1 , 𝑃2 = sup
𝑓∈ℱ

(𝔼𝑥~𝑃1 𝑓 𝑥 − 𝐸𝑥~𝑃2 [𝑓(𝑥)])

ℱ = 𝑓: 𝑓
∞
≤ 1 : Total Variation distance

ℱ = {𝑓: 𝑓
𝐿
≤ 1}: Wasserstein distance

ℱ = {𝑓: 𝑓
𝐻
≤ 1}: Maximum mean discrepancy



Learning the First Policy 

~

~𝓋1 𝑥 = σ𝑥0,𝑎0
𝑃 𝑥0 𝜋0 𝑎0 𝑥0 𝑃(𝑥|𝑥0, 𝑎0)

Expert Distribution

Learner Distribution



Learning the Second Policy 

~

~𝓋2 𝑥 = σ𝑥1,𝑎1𝓋1 𝑥1 𝜋1 𝑎1 𝑥1 𝑃(𝑥|𝑥1, 𝑎1)

Expert Distribution

Learner Distribution



Learning the Second Policy 

~

~𝓋2 𝑥 = σ𝑥1,𝑎1𝓋1 𝑥1 𝜋1 𝑎1 𝑥1 𝑃(𝑥|𝑥1, 𝑎1)

Expert Distribution

Learner Distribution



Learning the Second Policy 

~

~𝓋2 𝑥 = σ𝑥1,𝑎1𝓋1 𝑥1 𝜋1 𝑎1 𝑥1 𝑃(𝑥|𝑥1, 𝑎1)

Expert Distribution

Learner Distribution



Learning the Third Policy 

~

~𝓋3 𝑥

Expert Distribution



Learning 

Given the distribution 𝓋𝑇 induced by {𝜋1 , ⋯ , 𝜋𝑇} ∈ Π, the observation 
distribution at time step 𝑇 + 1 as

𝓋𝑇+1(𝑥) = ෍

𝑥𝑇 ,𝑎𝑇−1

𝓋𝑇 𝑥𝑇 𝜋 𝑎𝑇 𝑥𝑇 𝑃(𝑥|𝑥𝑇 , 𝑎𝑇)

Expert distribution at time step 𝑇 + 1 is denoted as 𝜇𝑇+1
∗

𝜋𝑇 is obtained via minimizing the divergence between 𝓋𝑇+1 and 𝜇𝑇+1
∗

𝜋𝑇 = argmin
𝜋∈Π

max
𝑓∈ℱ

𝑓 𝓋𝑇+1 − 𝑓(𝜇𝑇+1
∗ )



Learning 

However, the divergence max
f∈ℱ

𝑓 𝓋𝑇+1 − 𝑓(𝜇𝑇+1
∗ ) is not directly 

measurable since we do not have access to 𝜇𝑇+1
∗ but only samples from 

𝜇𝑇+1
∗ . 



Learning 

To estimate this divergence, we draw a dataset 

𝒟 = {(𝑥𝑇
𝑖 , 𝑎𝑇

𝑖 , 𝑥𝑇+1
𝑖 )}

such that 𝑥𝑇
𝑖 ~𝓋𝑇 , aT

i ~U A , xT+1
i ~P( ⋅ |𝑥𝑇

𝑖 , 𝑎𝑇
𝑖 )

Observations from expert 



Learning 

Empirical estimation of divergence:

Where the importance weight 𝐾𝜋(𝑎𝑇
𝑖 |𝑥𝑇

𝑖 ) is used to account for the 
fact that we draw actions uniformly from 𝐴 but want to evaluate 𝜋.



Learning 

Now define the utility function of the two-player game:

Then we have the two-player game with solution (𝜋∗, 𝑓∗):

𝑓∗ = argmax
f∈ℱ

𝑢(𝜋∗ , 𝑓)

𝜋∗ = argmin
𝜋∈Π

𝑢(𝜋, 𝑓∗)







Assumption: (Realizability and Capacity of 
Function Class)

Assume Π and ℱ are finite and contain 𝜋𝑡
∗ and 𝑓𝑡

∗, i.e., 

𝜋𝑡
∗ ∈ Π and 𝑓𝑡

∗ ∈ ℱ, ∀𝑡 ∈ 0, 𝑇



Convergence Result



Convergence Result

Given 𝜖 ∈ (0,1], 𝛿 ∈ (0,1], algorithm 1 outputs 𝜋 such that with 
probability 1 − 𝛿,

| {max
f

𝑓 𝓋𝑇+1 − 𝑓(𝜇𝑇+1
∗ )} − {min

𝜋′
max
f

𝑓 𝓋𝑇+1 − 𝑓(𝜇𝑇+1
∗ )} |<𝑂(𝜖)

( 𝐷𝑖𝑣 𝜋 − min
𝜋′

𝐷𝑖𝑣 𝜋′ < 𝑂(𝜖))



Simulation:

Model T Dense/Sparse 
Reward Task

Swimmer 100 Dense

Reacher 50 Dense/Sparse

FetchReach 50 Sparse



Simulation:

Compare FAIL with modified GAIL:

The modified version of GAIL uses RL methods to minimize the 
divergence between the learner’s average state distribution and 
expert’s average state distribution.



Experiment (Dense Reward)



Experiment (Dense Reward)



Experiment (Sparse Reward)



Experiment (Sparse Reward)



Summary

• This paper point out a new direction of imitation learning research: 
imitation learning from observation alone. (ILFO)

• Propose FAIL, an algorithm that is theoretically guaranteed to solve 
the ILFO problems.

• Modify GAIL to solve ILFO problem, experimentally demonstrate that 
GAIL and FAIL work equivalently well in problems with dense reward, 
and FAIL outperforms GAIL on sparse reward MDPs.


