Provably Efficient Imitation Learning from Observations

Wen Sun Anirudh Vemula

Byron Boots J.Andrew Bagnell

Presented by: Zichu Liu

Motivation: Imitation Learning from Observations (ILFO)

Trajectories of Observations

Learning From Observations

No interactive expert, no expert action, no reset, no cost signals Finite time horizon (T-step) Episodic MDP

Forward Adversarial Imitation Learning (FAIL)

 $\pi_0(a|x_0), \pi_1(a|x_1), \cdots, \pi_T(a|x_T)$

Decomposition into T subtasks

At time T, $\{\pi_1, \dots, \pi_{T-1}\}$ are learned already and fixed.

A state distribution $\mathscr{V}_T(x)$ is induced by $\{\pi_1, \dots, \pi_{T-1}\}$

Expert policy π^* naturally induces a distribution μ_T^*

We want to learn a policy $\pi_T \in \Pi_T$ such that the resulting observation distribution from $\{\pi_1, \dots, \pi_{T-1}, \pi_T\}$ at time step T is close to the expert's observation distribution μ_T^* at time step T

Divergence: Integral Probability Metrics (IPM)

$$d_{\mathcal{F}}(P_1, P_2) = \sup_{f \in \mathcal{F}} (\mathbb{E}_{x \sim P_1}[f(x)] - E_{x \sim P_2}[f(x)])$$

 $\begin{aligned} \mathcal{F} &= \left\{ f \colon \left| \left| f \right| \right|_{\infty} \leq 1 \right\} : \text{Total Variation distance} \\ \mathcal{F} &= \left\{ f \colon \left| \left| f \right| \right|_{L} \leq 1 \right\} : \text{Wasserstein distance} \\ \mathcal{F} &= \left\{ f \colon \left| \left| f \right| \right|_{H} \leq 1 \right\} : \text{Maximum mean discrepancy} \end{aligned}$

Learning the First Policy π_0

$$\sim \mu_1^*(x)$$

Expert Distribution

$$\sim v_1(x) = \sum_{x_0, a_0} P(x_0) \pi_0(a_0 | x_0) P(x | x_0, a_0)$$

Learning the Second Policy π_1

 $\sim \mu_2^*(x)$

Expert Distribution

 $\sim v_2(x) = \sum_{x_1,a_1} v_1(x_1) \pi_1(a_1|x_1) P(x|x_1,a_1)$

Learning the Second Policy π_1

 $^{\sim}\mu_{2}^{*}(x)$

Expert Distribution

 $\sim v_2(x) = \sum_{x_1,a_1} v_1(x_1) \pi_1(a_1|x_1) P(x|x_1,a_1)$

Learning the Second Policy π_1

Learning the Third Policy π_2

 $^{\sim}\mu_{3}^{*}(x)$

Expert Distribution

 $\sim v_3(x)$

Given the distribution \mathscr{V}_T induced by $\{\pi_1, \cdots, \pi_T\} \in \Pi$, the observation distribution at time step T + 1 as

$$v_{T+1}(x) = \sum_{x_T, a_{T-1}} v_T(x_T) \pi(a_T | x_T) P(x | x_T, a_T)$$

Expert distribution at time step T + 1 is denoted as μ_{T+1}^*

 π_T is obtained via minimizing the divergence between v_{T+1} and μ_{T+1}^*

$$\pi_T = \operatorname*{argmin}_{\pi \in \Pi} \max_{f \in \mathcal{F}} f(v_{T+1}) - f(\mu_{T+1}^*)$$

However, the divergence $\max_{f \in \mathcal{F}} f(v_{T+1}) - f(\mu_{T+1}^*)$ is not directly measurable since we do not have access to μ_{T+1}^* but only samples from μ_{T+1}^* .

To estimate this divergence, we draw a dataset

$$\mathcal{D} = \{(x_T^i, a_T^i, x_{T+1}^i)\}$$

such that
$$x_T^i \sim v_T$$
, $a_T^i \sim U(A)$, $x_{T+1}^i \sim P(\cdot | x_T^i, a_T^i)$

Observations from expert $\mathcal{D}^* = \{\tilde{x}_{T+1}^i\}_{i=1}^{N'} \sim \mu_{T+1}^*$

Empirical estimation of divergence:

$$\max_{f \in \mathcal{F}} \left(\frac{K}{N} \sum_{T}^{N} \pi\left(a_{T}^{i} \middle| x_{T}^{i}\right) f\left(x_{T+1}^{i}\right) - \frac{1}{N'} \sum_{T}^{N'} f\left(\tilde{x}_{T+1}^{i}\right)\right)$$

Where the importance weight $K\pi(a_T^i|x_T^i)$ is used to account for the fact that we draw actions uniformly from A but want to evaluate π .

Now define the utility function of the two-player game:

$$u(\pi, f) = \frac{K}{N} \sum_{i=1}^{N} \pi(a_{T}^{i} | x_{T}^{i}) f(x_{T+1}^{i}) - \frac{1}{N'} \sum_{i=1}^{N'} f(\tilde{x}_{T+1}^{i})$$

Then we have the two-player game with solution (π^* , f^*):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmax}} u(\pi^*, f)$$

$$\pi^* = \operatorname*{argmin}_{\pi \in \Pi} u(\pi, f^*)$$

Algorithm 1 Min-Max Game $(\mathcal{D}^*, \mathcal{D}, \Pi, \mathcal{F}, T)$

- 1: Initialize $\pi^0 \in \Pi$
- 2: for n = 1 to T do
- 3: $f^n = \arg \max_{f \in \mathcal{F}} u(\pi^n, f)$ (LP Oracle)
- 4: $u^n = u(\pi^n, f^n)$
- 5: $\pi^{n+1} = \arg \min_{\pi \in \Pi} \sum_{t=1}^{n} u(\pi, f^t) + \phi(\pi)$ (Regularized CS Oracle)
- 6: end for
- 7: **Output**: π^{n^*} with $n^* = \arg \min_{n \in [T]} u^n$

Algorithm 2 FAIL($\{\Pi_h\}_h, \{\mathcal{F}_h\}_h, \epsilon, n, n', T$)

1: Set $\pi = \emptyset$

- 2: for h = 1 to H 1 do
- 3: Extract expert's data at h + 1: $\tilde{\mathcal{D}} = {\tilde{x}_{h+1}^i}_{i=1}^{n'}$

4: $\mathcal{D} = \emptyset$

- 5: for i = 1 to n do
- 6: Reset $x_1^{(i)} \sim \rho$
- 7: Execute $\boldsymbol{\pi} = \{\pi_1, \dots, \pi_{h-1}\}$ to generate state x_h^i
- 8: Execute $a_h^i \sim U(\mathcal{A})$ to generate x_{h+1}^i and add $(x_h^i, a_h^i, x_{h+1}^i)$ to \mathcal{D}
- 9: end for
- 10: Set π_h to be the return of Algorithm 1 with inputs $\left(\tilde{\mathcal{D}}, \mathcal{D}, \Pi_h, \mathcal{F}_{h+1}, T\right)$
- 11: Append π_h to π
- 12: **end for**

Assumption: (Realizability and Capacity of Function Class)

Assume Π and \mathcal{F} are finite and contain π_t^* and f_t^* , i.e.,

$$\pi_t^* \in \Pi \text{ and } f_t^* \in \mathcal{F}, \forall t \in [0, T]$$

Convergence Result

Theorem 3.1. Given $\epsilon \in (0,1], \delta \in (0,1], \text{ set } T = \Theta\left(\frac{4K^2}{\epsilon^2}\right), N = N' = \Theta\left(\frac{K\log(|\Pi_h||\mathcal{F}_{h+1}|/\delta)}{\epsilon^2}\right), \text{ Algorithm 1 outputs } \pi \text{ such that with probability at least } 1 - \delta,$ $\left|d_{\mathcal{F}_{h+1}}(\pi|\nu_h, \mu_{h+1}^{\star}) - \min_{\pi' \in \Pi_h} d_{\mathcal{F}_{h+1}}(\pi'|\nu_h, \mu_{h+1}^{\star})\right| \leq O(\epsilon).$

Convergence Result

Given $\epsilon \in (0,1], \delta \in (0,1]$, algorithm 1 outputs π such that with probability $1 - \delta$,

$$|\{\max_{f} f(v_{T+1}) - f(\mu_{T+1}^{*})\} - \{\min_{\pi'} \max_{f} f(v_{T+1}) - f(\mu_{T+1}^{*})\}| < O(\epsilon)$$

$$\left(\left|Div(\pi) - \min_{\pi'} Div(\pi')\right| < O(\epsilon)\right)$$

Simulation:

Model	Τ	Dense/Sparse Reward Task
Swimmer	100	Dense
Reacher	50	Dense/Sparse
FetchReach	50	Sparse

Simulation:

Compare FAIL with modified GAIL:

The modified version of GAIL uses RL methods to minimize the divergence between the learner's average state distribution and expert's average state distribution.

Summary

- This paper point out a new direction of imitation learning research: imitation learning from observation alone. (ILFO)
- Propose FAIL, an algorithm that is theoretically guaranteed to solve the ILFO problems.
- Modify GAIL to solve ILFO problem, experimentally demonstrate that GAIL and FAIL work equivalently well in problems with dense reward, and FAIL outperforms GAIL on sparse reward MDPs.