# Off-Policy Evaluation via Off-Policy Classification

Alex Irpan, Kanishka Rao, Konstantinos Bousmalis, Chris Harris, Julian Ibarz, Sergey Levine

> Topic: Imitation - Inverse RL Presenter: Ning (Angela) Ye

- Motivation
- Contributions
- Background
- Method
- Results
- Limitations

#### Motivation

- Contributions
- Background
- Method
- Results
- Limitations

## Motivation

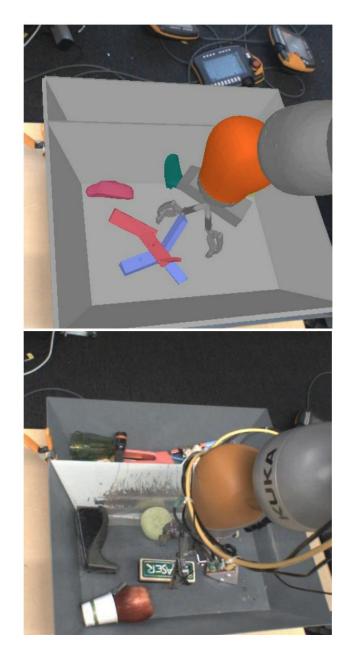
#### Large scale model-development with reliable off-policy evaluation



- Typically, performance of deep RL algorithms is evaluated via onpolicy interactions
- But comparing models in a real-world environment is costly
- Examines off-policy policy evaluation (OPE) for value-based methods

#### Motivation (cont.)

- Existing OPE metrics either rely on a model of the environment or importance sampling (IS)
- OPE is most useful in off-policy RL setting, where we expect to use real-world data as "validation set"
  - Hard to use with IS
  - For high-dimensional observations, models of the environment can be difficult to fit



- Motivation
- Contributions
- Background
- Method
- Results
- Limitations

#### Contributions

- Framed OPE as a positive-unlabeled (PU) classification problem and developed two scores: OPC and SoftOPC
  - Relies on neither IS nor model learning
  - Correlate well with performance (on both simulated and real-world tasks)
- Can be used with complex data to evaluate expected performance of off-policy RL methods
- Proposed metrics outperform a variety of baseline methods including simulation-to-reality transfer scenario

- Motivation
- Contributions

#### • Background

- Method
- Results
- Limitations

#### General Background (MDP)

- Focus on finite-horizon Markov decision processes (MDP):  $(S, A, P, S_0, r, \gamma)$
- Assume a **binary reward** MDP, which satisfies:
  - $\gamma = 1$
  - Reward is  $r_t = 0$  at all intermediate steps
  - Final reward  $r_T = \{0,1\}$
- Learn Q-functions  $Q(\mathbf{s}, \mathbf{a})$  to evaluate policies  $\pi(\mathbf{s}) = argmax_{\mathbf{a}}Q(\mathbf{s}, \mathbf{a})$

#### General Background (Positive-Unlabeled Learning)

- **Positive-unlabeled** (PU) learning learns binary classification from partially labeled data
  - Sufficient to learn a binary classifier if the positive class prior p(y = 1) is known
- Loss over negatives can be indirectly estimated from p(y = 1)

#### General Background (Positive-Unlabeled Learning)

• Want to evaluate l(g(x), y) over negative examples (x, y = 0)

$$p(x) = p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)$$

• Using 
$$\mathbb{E}_X[f(x)] = \int_x p(x)f(x)dx$$
:  
 $\mathbb{E}_X[f(x)] = p(y=1)\mathbb{E}_{X|Y=1}[f(x)] + p(y=0)\mathbb{E}_{X|Y=0}[f(x)]$ 

• Letting f(x) = l(g(x), 0):

 $p(y=0)\mathbb{E}_{X|Y=0}[l(g(x),0)] = \mathbb{E}_{X,Y}[l(g(x),0)] - p(y=1)\mathbb{E}_{X|Y=1}[l(g(x),0)]$ 

#### General Background (Definitions)

- In a binary reward MDP,  $(s_t, a_t)$  is **feasible** if an optimal  $\pi^*$  has nonzero probability of achieving success after taking  $a_t$  in  $s_t$
- $(\mathbf{s}_t, \mathbf{a}_t)$  is **catastrophic** if even an optimal  $\pi^*$  has zero probability of succeeding after  $\mathbf{a}_t$  is taken
- Therefore, return of a trajectory  $\tau$  is 1 only if all  $(\mathbf{s}_t, \mathbf{a}_t)$  in  $\tau$  are feasible

- Motivation
- Contributions
- Background
- Method
- Results
- Limitations

#### OPE Method (Theorem)

- Theorem:  $R(\pi) \ge 1 T[\epsilon + c]$ •  $\epsilon = \frac{1}{T} \sum_{i=1}^{T} \epsilon_t$  being average error over all  $(\mathbf{s}_t, \mathbf{a}_t)$ , with  $\epsilon_t = \mathbb{E}_{\rho_{t,\pi}^+} \left[ \sum_{\mathbf{a} \in \mathcal{A}_-(\mathbf{s}_t)} \pi(\mathbf{a} | \mathbf{s}_t) \right]$ 
  - $\mathcal{A}_{-}(\mathbf{s})$ : set of catastrophic actions at state  $\mathbf{s}$
  - $\rho_{t,\pi}^+$ : state distribution at time *t*, given that  $\pi$  was followed, and all its previous actions were feasible, and  $\mathbf{s}_t$  is feasible
  - $c(\mathbf{s}_t, \mathbf{a}_t)$  probability that stochastic dynamics bring a feasible  $(\mathbf{s}_t, \mathbf{a}_t)$  to a catastrophic  $\mathbf{s}_{t+1}$ , with  $c = \max_{\mathbf{s}, \mathbf{a}} c(\mathbf{s}, \mathbf{a})$

#### **OPE Method** (Missing negative labels)

• Estimate  $\epsilon$ , probability that  $\pi$  takes a catastrophic action – i.e.,  $(\mathbf{s}, \pi(\mathbf{s}))$  is a false positive

$$\epsilon = p(y = 0) \mathbb{E}_{X|Y=0}[l(g(x), 0)]$$

- Recall  $p(y=0)\mathbb{E}_{X|Y=0}[l(g(x),0)] = \mathbb{E}_{X,Y}[l(g(x),0)] - p(y=1)\mathbb{E}_{X|Y=1}[l(g(x),0)]$
- We obtain

$$\epsilon = \mathbb{E}_{(\mathbf{s},\mathbf{a})}[l(Q(\mathbf{s},\mathbf{a}),0)] - p(y=1)\mathbb{E}_{(\mathbf{s},\mathbf{a}),y=1}[l(Q(\mathbf{s},\mathbf{a}),0)]$$

#### OPE Method (Off-policy classification)

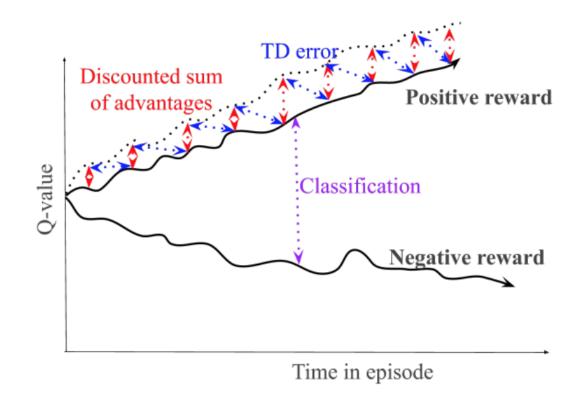
- Off-policy classification (OPC) score: negative loss when l is 0-1 loss  $l(Q(\mathbf{s}, \mathbf{a}), Y) = \frac{1}{2} + \left(\frac{1}{2} - Y\right) \operatorname{sign}(Q(\mathbf{s}, \mathbf{a}) - \mathbf{b})$
- SoftOPC: negative loss when l is a soft loss function  $l(Q(\mathbf{s}, \mathbf{a}), Y) = (1 - 2Y)Q(\mathbf{s}, \mathbf{a})$ 
  - $OPC(Q) = p(y = 1)\mathbb{E}_{(\mathbf{s},\mathbf{a}),y=1}\left[1_{Q(\mathbf{s},\mathbf{a})>b}\right] \mathbb{E}_{(\mathbf{s},\mathbf{a})}\left[1_{Q(\mathbf{s},\mathbf{a})>b}\right]$ SoftOPC(Q) =  $p(y = 1)\mathbb{E}_{(\mathbf{s},\mathbf{a}),y=1}[Q(\mathbf{s},\mathbf{a})] - \mathbb{E}_{(\mathbf{s},\mathbf{a})}[Q(\mathbf{s},\mathbf{a})]$

#### **OPE Method** (Evaluating OPE metrics)

- Standard method: report MSE to the true episode return
  - Our metrics do not estimate episode return directly
- Instead, train many Q-functions with different learning algorithms
  - Evaluate true return of the equivalent argmax policy for each Q-function
  - Compare correlation of the metric to true return
  - Coefficient of determination of line of best fit  $R^2$ , and Spearman rank correlation  $\xi$

## **Baseline Metrics**

- Temporal-difference (TD) error
  - Standard Q-learning training loss
- Discounted sum of advantages  $\sum_t \gamma^t A^{\pi}$ 
  - Relates  $V^{\pi_b}(\mathbf{s}) V^{\pi}(\mathbf{s})$  to the sum of advantages over data from  $\pi_b$
- Monte Carlo corrected (MCC) error
  - Arrange discounted sum of advantages into a squared error



- Motivation
- Contributions
- Background
- Method
- Results
- Limitations

#### Experimental Results (Simple Environments)

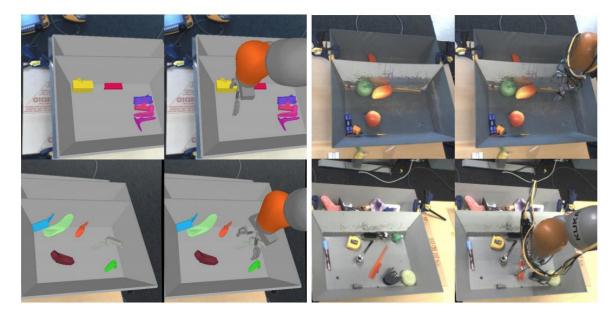
#### • Performance against stochastic dynamics

|                                                          | Stochastic Tree 1-Success Leaf |       |                |       |                | Pong Sticky Actions |            |       |            |       |
|----------------------------------------------------------|--------------------------------|-------|----------------|-------|----------------|---------------------|------------|-------|------------|-------|
|                                                          | $\epsilon = 0.4$               |       | $\epsilon=0.6$ |       | $\epsilon=0.8$ |                     | Sticky 10% |       | Sticky 25% |       |
|                                                          | $R^2$                          | ξ     | $R^2$          | ξ     | $R^2$          | ξ                   | $R^2$      | ξ     | $R^2$      | ξ     |
| TD Err                                                   | 0.01                           | -0.07 | 0.00           | -0.05 | 0.00           | -0.05               | 0.05       | -0.16 | 0.07       | -0.15 |
| $\sum oldsymbol{\gamma}^t oldsymbol{A}^{oldsymbol{\pi}}$ | 0.00                           | 0.01  | 0.01           | -0.07 | 0.00           | -0.02               | 0.04       | -0.29 | 0.01       | -0.22 |
| <b>MCC Err</b>                                           | 0.07                           | -0.27 | 0.01           | -0.06 | 0.01           | -0.11               | 0.02       | -0.32 | 0.00       | -0.18 |
| OPC (Ours)                                               | 0.13                           | 0.38  | 0.01           | 0.08  | 0.03           | 0.19                | 0.48       | 0.73  | 0.33       | 0.66  |
| SoftOPC (Ours)                                           | 0.14                           | 0.39  | 0.03           | 0.18  | 0.04           | 0.20                | 0.33       | 0.67  | 0.16       | 0.58  |

#### Experimental Results (Vision-Based Robotic Grasping)

|                                                          | Tree (1 Succ) |       | Pong  |       | Sim Train |       | Sim Test |       | Real-World |       |
|----------------------------------------------------------|---------------|-------|-------|-------|-----------|-------|----------|-------|------------|-------|
|                                                          | $R^2$         | ξ     | $R^2$ | ξ     | $R^2$     | ξ     | $R^2$    | ξ     | $R^2$      | ξ     |
| TD Err                                                   | 0.02          | -0.15 | 0.05  | -0.18 | 0.02      | -0 37 | 0 10     | -0 51 | 0.17       | 0.48  |
| $\sum oldsymbol{\gamma}^t oldsymbol{A}^{oldsymbol{\pi}}$ | 0.00          | 0.00  | 0.09  | -0.32 | 0.74      | 0.81  | 0.74     | 0.78  | 0.12       | 0.50  |
| <b>MCC Err</b>                                           | 0.06          | -0.26 | 0.04  | -0.36 | 0.00      | 0.33  | 0.06     | -0.44 | 0.01       | -0.15 |
| OPC (Ours)                                               | 0.21          | 0.50  | 0.50  | 0.72  | 0.49      | 0.86  | 0.35     | 0.66  | 0.81       | 0.87  |
| SoftOPC (Ours)                                           | 0.19          | 0.51  | 0.36  | 0.75  | 0.55      | 0.76  | 0.48     | 0.77  | 0.91       | 0.94  |

 Performance on simulated and real versions of a visionbased grasping task

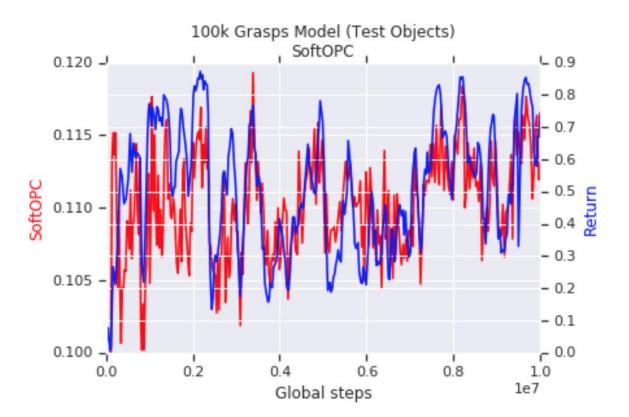


(a) Simulated samples

(b) Real samples

#### Discussion of results

- OPC and SoftOPC consistently outperformed baselines
- SoftOPC more reliably ranks policies than baselines for realworld performance
- SoftOPC performs slightly better than OPC



- Motivation
- Contributions
- Background
- Method
- Results
- Limitations

#### Limitations

- Key limitation: restricted task domain
  - Assumes an agent either succeeds or fails
  - Difficult to model with complicated tasks with a long time-horizon
- Could not compare to many OPE baselines that use IS and model learning techniques
- High correlation with real-world robotic grasping task, but comparable with sum of discounted advantages in simulation

# Contributions (Recap)

- Difficult and expensive to evaluate performance based on real-world environments
  - Many off-policy RL methods are based on value-based methods and do not require any knowledge of the policy that generated the real-world training data
  - These methods are hard to use with IS and model selection
- Treated evaluation as a classification problem and proposed OPC and SoftOPC from negative losses to be used with off-policy Q-learning algorithms
  - Can predict relative performance of different policies in generalization scenarios
- Proposed OPE metrics outperform a variety of baseline methods including simulation-to-reality transfer scenario

#### Take Home Questions

- What conditions must be met for the MDP to perform OPE via OPC?
- What is a natural choice for the decision function?
- How are the classification scores determined? Which losses are used?
- Which two correlations are used to evaluate the metrics?