Off-Policy Evaluation via Off-Policy Classification

Alex Irpan, Kanishka Rao, Konstantinos Bousmalis, Chris Harris, Julian Ibarz, Sergey Levine

> Topic: Imitation - Inverse RL Presenter: Ning (Angela) Ye

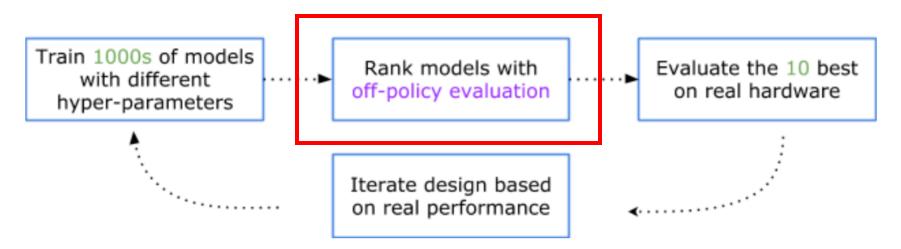
- Motivation
- Contributions
- Background
- Method
- Results
- Limitations

Motivation

- Contributions
- Background
- Method
- Results
- Limitations

Motivation

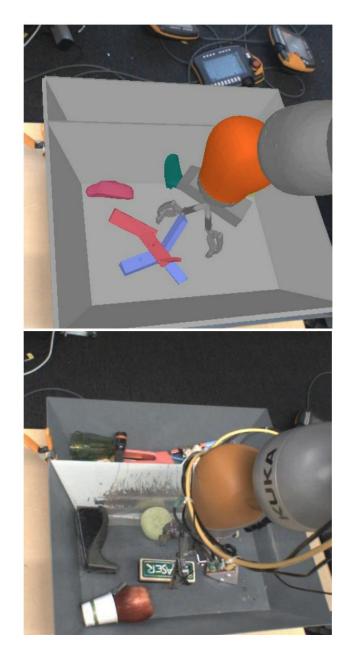
Large scale model-development with reliable off-policy evaluation



- Typically, performance of deep RL algorithms is evaluated via onpolicy interactions
- But comparing models in a real-world environment is costly
- Examines off-policy policy evaluation (OPE) for value-based methods

Motivation (cont.)

- Existing OPE metrics either rely on a model of the environment or importance sampling (IS)
- OPE is most useful in off-policy RL setting, where we expect to use real-world data as "validation set"
 - Hard to use with IS
 - For high-dimensional observations, models of the environment can be difficult to fit



- Motivation
- Contributions
- Background
- Method
- Results
- Limitations

Contributions

- Framed OPE as a positive-unlabeled (PU) classification problem and developed two scores: OPC and SoftOPC
 - Relies on neither IS nor model learning
 - Correlate well with performance (on both simulated and real-world tasks)
- Can be used with complex data to evaluate expected performance of off-policy RL methods
- Proposed metrics outperform a variety of baseline methods including simulation-to-reality transfer scenario

- Motivation
- Contributions

• Background

- Method
- Results
- Limitations

General Background (MDP)

- Focus on finite-horizon Markov decision processes (MDP): $(S, A, P, S_0, r, \gamma)$
- Assume a **binary reward** MDP, which satisfies:
 - $\gamma = 1$
 - Reward is $r_t = 0$ at all intermediate steps
 - Final reward $r_T = \{0,1\}$
- Learn Q-functions $Q(\mathbf{s}, \mathbf{a})$ to evaluate policies $\pi(\mathbf{s}) = argmax_{\mathbf{a}}Q(\mathbf{s}, \mathbf{a})$

General Background (Positive-Unlabeled Learning)

- **Positive-unlabeled** (PU) learning learns binary classification from partially labeled data
 - Sufficient to learn a binary classifier if the positive class prior p(y = 1) is known
- Loss over negatives can be indirectly estimated from p(y = 1)

General Background (Positive-Unlabeled Learning)

• Want to evaluate l(g(x), y) over negative examples (x, y = 0)

$$p(x) = p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)$$

• Using
$$\mathbb{E}_X[f(x)] = \int_x p(x)f(x)dx$$
:
 $\mathbb{E}_X[f(x)] = p(y=1)\mathbb{E}_{X|Y=1}[f(x)] + p(y=0)\mathbb{E}_{X|Y=0}[f(x)]$

• Letting f(x) = l(g(x), 0):

 $p(y=0)\mathbb{E}_{X|Y=0}[l(g(x),0)] = \mathbb{E}_{X,Y}[l(g(x),0)] - p(y=1)\mathbb{E}_{X|Y=1}[l(g(x),0)]$

General Background (Definitions)

- In a binary reward MDP, (s_t, a_t) is **feasible** if an optimal π^* has nonzero probability of achieving success after taking a_t in s_t
- $(\mathbf{s}_t, \mathbf{a}_t)$ is **catastrophic** if even an optimal π^* has zero probability of succeeding after \mathbf{a}_t is taken
- Therefore, return of a trajectory τ is 1 only if all $(\mathbf{s}_t, \mathbf{a}_t)$ in τ are feasible

- Motivation
- Contributions
- Background
- Method
- Results
- Limitations

OPE Method (Theorem)

- Theorem: $R(\pi) \ge 1 T[\epsilon + c]$ • $\epsilon = \frac{1}{T} \sum_{i=1}^{T} \epsilon_t$ being average error over all $(\mathbf{s}_t, \mathbf{a}_t)$, with $\epsilon_t = \mathbb{E}_{\rho_{t,\pi}^+} \left[\sum_{\mathbf{a} \in \mathcal{A}_-(\mathbf{s}_t)} \pi(\mathbf{a} | \mathbf{s}_t) \right]$
 - $\mathcal{A}_{-}(\mathbf{s})$: set of catastrophic actions at state \mathbf{s}
 - $\rho_{t,\pi}^+$: state distribution at time *t*, given that π was followed, and all its previous actions were feasible, and \mathbf{s}_t is feasible
 - $c(\mathbf{s}_t, \mathbf{a}_t)$ probability that stochastic dynamics bring a feasible $(\mathbf{s}_t, \mathbf{a}_t)$ to a catastrophic \mathbf{s}_{t+1} , with $c = \max_{\mathbf{s}, \mathbf{a}} c(\mathbf{s}, \mathbf{a})$

OPE Method (Missing negative labels)

• Estimate ϵ , probability that π takes a catastrophic action – i.e., $(\mathbf{s}, \pi(\mathbf{s}))$ is a false positive

$$\epsilon = p(y = 0) \mathbb{E}_{X|Y=0}[l(g(x), 0)]$$

- Recall $p(y=0)\mathbb{E}_{X|Y=0}[l(g(x),0)] = \mathbb{E}_{X,Y}[l(g(x),0)] - p(y=1)\mathbb{E}_{X|Y=1}[l(g(x),0)]$
- We obtain

$$\epsilon = \mathbb{E}_{(\mathbf{s},\mathbf{a})}[l(Q(\mathbf{s},\mathbf{a}),0)] - p(y=1)\mathbb{E}_{(\mathbf{s},\mathbf{a}),y=1}[l(Q(\mathbf{s},\mathbf{a}),0)]$$

OPE Method (Off-policy classification)

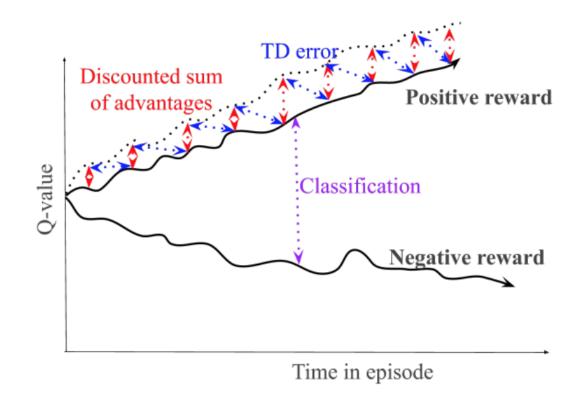
- Off-policy classification (OPC) score: negative loss when l is 0-1 loss $l(Q(\mathbf{s}, \mathbf{a}), Y) = \frac{1}{2} + \left(\frac{1}{2} - Y\right) \operatorname{sign}(Q(\mathbf{s}, \mathbf{a}) - \mathbf{b})$
- SoftOPC: negative loss when l is a soft loss function $l(Q(\mathbf{s}, \mathbf{a}), Y) = (1 - 2Y)Q(\mathbf{s}, \mathbf{a})$
 - $OPC(Q) = p(y = 1)\mathbb{E}_{(\mathbf{s},\mathbf{a}),y=1}\left[1_{Q(\mathbf{s},\mathbf{a})>b}\right] \mathbb{E}_{(\mathbf{s},\mathbf{a})}\left[1_{Q(\mathbf{s},\mathbf{a})>b}\right]$ SoftOPC(Q) = $p(y = 1)\mathbb{E}_{(\mathbf{s},\mathbf{a}),y=1}[Q(\mathbf{s},\mathbf{a})] - \mathbb{E}_{(\mathbf{s},\mathbf{a})}[Q(\mathbf{s},\mathbf{a})]$

OPE Method (Evaluating OPE metrics)

- Standard method: report MSE to the true episode return
 - Our metrics do not estimate episode return directly
- Instead, train many Q-functions with different learning algorithms
 - Evaluate true return of the equivalent argmax policy for each Q-function
 - Compare correlation of the metric to true return
 - Coefficient of determination of line of best fit R^2 , and Spearman rank correlation ξ

Baseline Metrics

- Temporal-difference (TD) error
 - Standard Q-learning training loss
- Discounted sum of advantages $\sum_t \gamma^t A^{\pi}$
 - Relates $V^{\pi_b}(\mathbf{s}) V^{\pi}(\mathbf{s})$ to the sum of advantages over data from π_b
- Monte Carlo corrected (MCC) error
 - Arrange discounted sum of advantages into a squared error



- Motivation
- Contributions
- Background
- Method
- Results
- Limitations

Experimental Results (Simple Environments)

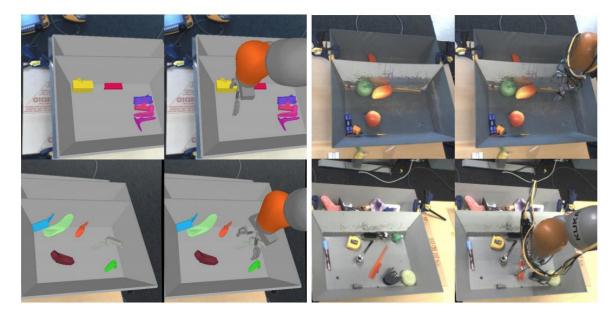
• Performance against stochastic dynamics

	Stochastic Tree 1-Success Leaf					Pong Sticky Actions				
	$\epsilon = 0.4$		$\epsilon=0.6$		$\epsilon=0.8$		Sticky 10%		Sticky 25%	
	R^2	ξ	R^2	ξ	R^2	ξ	R^2	ξ	R^2	ξ
TD Err	0.01	-0.07	0.00	-0.05	0.00	-0.05	0.05	-0.16	0.07	-0.15
$\sum oldsymbol{\gamma}^t oldsymbol{A}^{oldsymbol{\pi}}$	0.00	0.01	0.01	-0.07	0.00	-0.02	0.04	-0.29	0.01	-0.22
MCC Err	0.07	-0.27	0.01	-0.06	0.01	-0.11	0.02	-0.32	0.00	-0.18
OPC (Ours)	0.13	0.38	0.01	0.08	0.03	0.19	0.48	0.73	0.33	0.66
SoftOPC (Ours)	0.14	0.39	0.03	0.18	0.04	0.20	0.33	0.67	0.16	0.58

Experimental Results (Vision-Based Robotic Grasping)

	Tree (1 Succ)		Pong		Sim Train		Sim Test		Real-World	
	R^2	ξ	R^2	ξ	R^2	ξ	R^2	ξ	R^2	ξ
TD Err	0.02	-0.15	0.05	-0.18	0.02	-0 37	0 10	-0 51	0.17	0.48
$\sum oldsymbol{\gamma}^t oldsymbol{A}^{oldsymbol{\pi}}$	0.00	0.00	0.09	-0.32	0.74	0.81	0.74	0.78	0.12	0.50
MCC Err	0.06	-0.26	0.04	-0.36	0.00	0.33	0.06	-0.44	0.01	-0.15
OPC (Ours)	0.21	0.50	0.50	0.72	0.49	0.86	0.35	0.66	0.81	0.87
SoftOPC (Ours)	0.19	0.51	0.36	0.75	0.55	0.76	0.48	0.77	0.91	0.94

 Performance on simulated and real versions of a visionbased grasping task

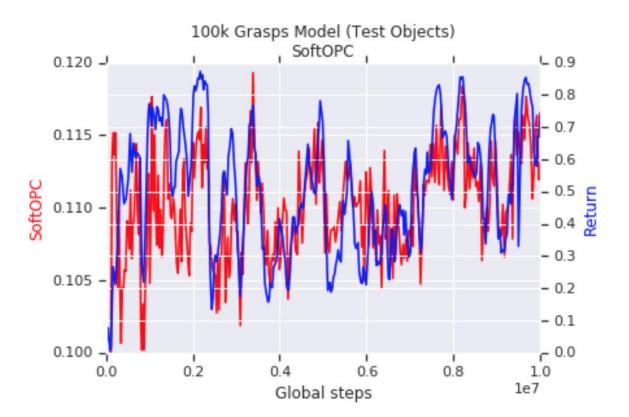


(a) Simulated samples

(b) Real samples

Discussion of results

- OPC and SoftOPC consistently outperformed baselines
- SoftOPC more reliably ranks policies than baselines for realworld performance
- SoftOPC performs slightly better than OPC



- Motivation
- Contributions
- Background
- Method
- Results
- Limitations

Limitations

- Key limitation: restricted task domain
 - Assumes an agent either succeeds or fails
 - Difficult to model with complicated tasks with a long time-horizon
- Could not compare to many OPE baselines that use IS and model learning techniques
- High correlation with real-world robotic grasping task, but comparable with sum of discounted advantages in simulation

Contributions (Recap)

- Difficult and expensive to evaluate performance based on real-world environments
 - Many off-policy RL methods are based on value-based methods and do not require any knowledge of the policy that generated the real-world training data
 - These methods are hard to use with IS and model selection
- Treated evaluation as a classification problem and proposed OPC and SoftOPC from negative losses to be used with off-policy Q-learning algorithms
 - Can predict relative performance of different policies in generalization scenarios
- Proposed OPE metrics outperform a variety of baseline methods including simulation-to-reality transfer scenario

Take Home Questions

- What conditions must be met for the MDP to perform OPE via OPC?
- What is a natural choice for the decision function?
- How are the classification scores determined? Which losses are used?
- Which two correlations are used to evaluate the metrics?